Produit scalaire

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
peedro
Membre Naturel
Messages: 17
Enregistré le: 22 Avr 2007, 15:25

Produit scalaire

par peedro » 22 Avr 2007, 16:07

Bonjour j'ai un petit problème pour trouver l'ensemble d'un point M, définit par un produit scalaire :

On considére les barycentre G et G' des systèmes {(B,1);(C,-2)} et
{(B,1);(C,2)} :

Voila ce que j'ai fait :

Dans une question précédente j'ai démontré que:
(MB-2MC).(MB+2MC)=0

GB-2GC=0
MB-2MC = MG+GB-2MG+GC = (1-2)MG+GB-2GC = -MG

G'B-2G'C=0

MB+2MC = MG'+G'B+2MG'+G'C = (1+2)MG'+G'B+2G'C = 3MG'

donc
(MB-2MC).(MB+2MC) = -MG.3MG'

alors
-MG.3MG' = 0

A partir de cette relation il faut déterminer l'ensemble des points M et je n'y arrive pas.

Merci d'avance



fabien44
Messages: 4
Enregistré le: 22 Avr 2007, 16:34

par fabien44 » 22 Avr 2007, 16:59

je ne garantis rien, mais si le produit scalaire est nul, les deux vecteurs sont orthogonaux donc si tu travailles dans le plan, l'ensemble de points cherché est le cercle de diamètre [G, G']... à voir...

peedro
Membre Naturel
Messages: 17
Enregistré le: 22 Avr 2007, 15:25

par peedro » 22 Avr 2007, 18:18

C'est ce que je pensais, mais j'étais pas sur...
Merci

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 56 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite