Étape d'un calcul
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 26 Aoû 2016, 12:25
Bonjour, je suis bloqué à cette étape:
(Rac(n+1)-Rac(n))(Rac(n+1)-rac(n))
Dans la correction, la réponse est 1, je ne comprend aps comment on passe de ça à 1, si vous voulez bien m'aider
-
Gisé
- Membre Naturel
- Messages: 33
- Enregistré le: 04 Aoû 2016, 18:44
-
par Gisé » 26 Aoû 2016, 13:52
Salut,
Tu n'as pas dû voir que c'était la même quantité en haut et en bas

-
beagle
- Habitué(e)
- Messages: 8746
- Enregistré le: 08 Sep 2009, 14:14
-
par beagle » 26 Aoû 2016, 13:58
ou alors tu n'as pas vu que d'un coté on avait un + et de l'autre un -
comme dans l'identité remarquable:
(a+b) (a-b) = a² - b²
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.
-
Gisé
- Membre Naturel
- Messages: 33
- Enregistré le: 04 Aoû 2016, 18:44
-
par Gisé » 26 Aoû 2016, 14:08
Oups désolé, j'ai cru à une fraction ...
Dans ton premier post, c'est la même quantité dans le membre de droite que dans celui de gauche.
Il faut considérer
\big(\sqrt{n+1}+\sqrt{n}\big))
, puis suivre l'indication de
beagle.
-
zygomatique
- Habitué(e)
- Messages: 6928
- Enregistré le: 20 Mar 2014, 12:31
-
par zygomatique » 26 Aoû 2016, 15:43
pourquoi faire du multi-post ?
Ce qui est affirmé sans preuve peut être nié sans preuve. EUCLIDE
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 26 Aoû 2016, 15:47
Je ne comprend pas vos réponses, enfaite si ça peut aider c'est une fraction:
((Rac(n+1)-Rac(n))(Rac(n+1)-rac(n)))/Rac(n+1)+Rac(n)
Le résultat étant: 1/Rac(n+1)+Rac(n)
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 26 Aoû 2016, 15:48
zygomatique a écrit:pourquoi faire du multi-post ?
Comment ça? C'est à dire que je pose bcp de questions?
-
Gisé
- Membre Naturel
- Messages: 33
- Enregistré le: 04 Aoû 2016, 18:44
-
par Gisé » 26 Aoû 2016, 17:15
lrnt00 a écrit:Je ne comprend pas vos réponses, enfaite si ça peut aider c'est une fraction:
((Rac(n+1)-Rac(n))(Rac(n+1)-rac(n)))/Rac(n+1)+Rac(n)
Le résultat étant: 1/Rac(n+1)+Rac(n)
Je ne comprends pas ta question.
Tout t'a été expliqué !
Il y a une erreur au numérateur. C'est l'expression que j'ai donnée dans mon précédent message qu'il faut considérer.
Ton expression est :
\big(\sqrt{n+1}+\sqrt{n}\big)}{\sqrt{n+1}+\sqrt{n}})
MULTI-POST = tu postes le MÊME SUJET sur deux fils différents. Tu trompes ainsi ceux qui te répondent.
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 26 Aoû 2016, 17:55
Dans la correction de l'exercice ce n'était pas comme ça au numérateur, Il y avait ce que je vous ai Indiquer
-
Gisé
- Membre Naturel
- Messages: 33
- Enregistré le: 04 Aoû 2016, 18:44
-
par Gisé » 26 Aoû 2016, 21:08
Donne-nous l'énoncé exact, ça sera tellement plus simple !!!
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 26 Aoû 2016, 22:44
Mais ça sera beaucoup plus long! Mais bon.
"Montrez que Un EST croissante, avec Un= ( n*Rac(n)-1000)/n avec n>ou= à 1."
-
Gisé
- Membre Naturel
- Messages: 33
- Enregistré le: 04 Aoû 2016, 18:44
-
par Gisé » 27 Aoû 2016, 10:37
Et donc, quel est ton raisonnement ... Ça n'avance pas hein !
Sinon, pour revenir à la question de base, il suffit de montrer que :
\big(\sqrt{n+1}+\sqrt{n}\big)=1)
On te l'a dit, applique simplement l'identité
(a+b )=a^2-b^2)
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 27 Aoû 2016, 12:06
Bon je me suis pas fais comprendre alors.
Pour répondre à la consigne il faut faire Un+1-Un, c'est ce que j'ai fais sauf que j'ai bloqué à une étape j'ai regardé la correction, & il y avait écrit ce que je vous ai indiqué! Alors je comprend pas pourquoi vous me ressortez (a+b)(a-b), puisque dans la correction on a plutôt: ((a-b)(a-b))/a+b
http://www.academie-en-ligne.fr/Ressour ... rcices.pdf C'est A la page 12, question b c'est la correction
-
zygomatique
- Habitué(e)
- Messages: 6928
- Enregistré le: 20 Mar 2014, 12:31
-
par zygomatique » 27 Aoû 2016, 12:25
salut
Pour répondre à la consigne il faut faire Un+1-Un
1/ que veut dire faire ?
2/ non il suffit ...
mais on peut s'en passer :::

or les fonctions

et

sont (strictement) croissantes (l'opposé d'une fonction décroissante est croissante)
il en est de même de leur somme ...
Ce qui est affirmé sans preuve peut être nié sans preuve. EUCLIDE
-
Gisé
- Membre Naturel
- Messages: 33
- Enregistré le: 04 Aoû 2016, 18:44
-
par Gisé » 27 Aoû 2016, 12:43
lrnt00 a écrit:Bon je me suis pas fais comprendre alors.
Pour répondre à la consigne il faut faire Un+1-Un, c'est ce que j'ai fais sauf que j'ai bloqué à une étape j'ai regardé la correction, & il y avait écrit ce que je vous ai indiqué! Alors je comprend pas pourquoi vous me ressortez (a+b)(a-b), puisque dans la correction on a plutôt: ((a-b)(a-b))/a+b
http://www.academie-en-ligne.fr/Ressour ... rcices.pdf C'est A la page 12, question b c'est la correction
Tout simplement parce qu'il y a une erreur dans la correction du CNED pardi !!
Au numérateur, c'est un + et NON un - ...
-
lrnt00
- Membre Naturel
- Messages: 67
- Enregistré le: 12 Aoû 2015, 23:43
-
par lrnt00 » 27 Aoû 2016, 13:50
Ah bah voilà! C'est donc pour ça! Bon bah c'est bon alors c'est compris, en tout cas merci pour vos réponses!
-
Lostounet
- Membre Légendaire
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 27 Aoû 2016, 14:49
lrnt00 a écrit: zygomatique a écrit:pourquoi faire du multi-post ?
Comment ça? C'est à dire que je pose bcp de questions?
Cela signifie qu'il ne faut pas créer deux discussions identiques pour une même question. Car on s'y perd...
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 84 invités