Exercice sur les systèmes de numération

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
diormund
Messages: 3
Enregistré le: 25 Avr 2016, 20:13

Exercice sur les systèmes de numération

par diormund » 25 Avr 2016, 21:04

Bonjour à tous, voilà je suis bloqué par un petit exercice sur les systèmes de numération :
A,B,C sont des nombres naturels 1
Trouver A,B et C en sachant que dans le système de numération A :
B+C=46 et BC=545
Merci d'avance :)
Modifié en dernier par diormund le 26 Avr 2016, 11:51, modifié 1 fois.



Carpate
Habitué(e)
Messages: 3930
Enregistré le: 05 Jan 2012, 18:05

Re: Exercice sur les systèmes de numération

par Carpate » 26 Avr 2016, 07:27

A : B+C=46

Que signifie : dans cette expression ?

nodgim
Habitué(e)
Messages: 2002
Enregistré le: 27 Jan 2008, 10:21

Re: Exercice sur les systèmes de numération

par nodgim » 26 Avr 2016, 11:07

Le système de numération A, c'est sous entendu de base A ?

diormund
Messages: 3
Enregistré le: 25 Avr 2016, 20:13

Re: Exercice sur les systèmes de numération

par diormund » 26 Avr 2016, 11:51

Oui je voulais bel et bien dire de base A. Quant au signe ":" c'était juste pour séparer en fait désolé.

Carpate
Habitué(e)
Messages: 3930
Enregistré le: 05 Jan 2012, 18:05

Re: Exercice sur les systèmes de numération

par Carpate » 26 Avr 2016, 14:51

Peut-être me trompe-je mais :
46 en base A c'est soit
46 en base 10 c'est soit

B et C seraient donc écrits en base 10 (!)
Et alors le système :
BC=545
B+C =46
admet la solution (positive) de l'équation du second degré :

Mais cette équation a un discriminant négatif !!

nodgim
Habitué(e)
Messages: 2002
Enregistré le: 27 Jan 2008, 10:21

Re: Exercice sur les systèmes de numération

par nodgim » 26 Avr 2016, 17:02

Tu te trompes Carpate.
Il existe bien une unique solution avec A = 8
Il suffit de résoudre l'équation en écrivant que 46= 4A+6 et 545= 5A²+4A+5

Carpate
Habitué(e)
Messages: 3930
Enregistré le: 05 Jan 2012, 18:05

Re: Exercice sur les systèmes de numération

par Carpate » 26 Avr 2016, 17:48

Bonsoir Nodgim
Comment trouves-tu 8 ?
la première équation me donne 4A = 40 que je porte dans la seconde



où est mon erreur ?

nodgim
Habitué(e)
Messages: 2002
Enregistré le: 27 Jan 2008, 10:21

Re: Exercice sur les systèmes de numération

par nodgim » 27 Avr 2016, 07:28

D'abord A > 6

B + C = 4 A + 6 donc B = 4 A + 6 - C
BC = 5 A² + 4 A + 5
C ( 4A + 6 - C ) = 5 A² + 4 A + 5
C² - C ( 4 A + 6 ) + 5 A² + 4 A + 5 = 0
Delta ' = - A² + 8 A + 4 doit être un carré.

- A² + 8 A + 4 = B²
- A² + 8 A + 4 - B² = 0
Delta ' = 20 - B²
B = 4 ou 2, et donc seule solution pour A : 8

Carpate
Habitué(e)
Messages: 3930
Enregistré le: 05 Jan 2012, 18:05

Re: Exercice sur les systèmes de numération

par Carpate » 27 Avr 2016, 09:11

Grosse bourde de ma part en écrivant que 46=4A+6, je faisais implicitement le choix A=10 !
J'avais une solution plus longue que celle de Nodjim et que j'écris à titre de repentance (!)
B+C = 46
BC=545
Ce système est écrit dans une base A au moins égale à 7
1) en base 7
on fait les calculs en base 10


B et C vérifient dont le discriminant n'est pas un carré d'entier.

1) en base 8


B et C vérifient de discriminant
racines entières : 17 et 21
donc base 8 et

Vérif:

Modifié en dernier par Carpate le 27 Avr 2016, 16:20, modifié 2 fois.

diormund
Messages: 3
Enregistré le: 25 Avr 2016, 20:13

Re: Exercice sur les systèmes de numération

par diormund » 27 Avr 2016, 15:47

Je n'ai pas très bien compris d'où vient l'équation , tu peux m'expliquer ? :(

Carpate
Habitué(e)
Messages: 3930
Enregistré le: 05 Jan 2012, 18:05

Re: Exercice sur les systèmes de numération

par Carpate » 27 Avr 2016, 16:15

C'est un grand classique si deux nombres sont connus par leur somme S et leur produit P, ils sont racines de l'équation du second degré

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 66 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite