Seconde forme fondamentale pour la sphère

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
sinusx
Membre Naturel
Messages: 16
Enregistré le: 26 Sep 2009, 16:08

Seconde forme fondamentale pour la sphère

par sinusx » 20 Fév 2014, 12:10

Bonjour,

Je rencontre un petit problème quand je calcule la courbure de Gauss de la sphère.

Le paramétrage est


Une base du plan tangent à un point est donnée par les vecteurs :

Leur produit vectoriel donne, après normalisation (par ), le vecteur normal de Gauss :


Pour calculer les courbures principales, il faut calculer sa différentielle et l'exprimer dans la base du plan tangent. Mais on peut remarquer à ce stade qu'on a : de telle sorte que
et alors la matrice de l'endomorphisme dans la base du plan est :
D'où la courbure de Gauss .

Question :
Lorsque j'utilise directement la matrice de la seconde forme fondamentale

J'obtiens, avec les calculs précédents


Le qui subsiste me semble bizarre. J'ai vérifié les calculs avec une machine. La définition (http://ljk.imag.fr/membres/Bernard.Ycart/mel/cs/cs.pdf , p. 23) que j'utilise pour la matrice de la seconde forme fondamentale est-elle correcte ? Si oui où se trouve mon erreur ?

Merci d'avance !



 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 58 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite