Problème sur les suites arithmétique et géometrique

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

Problème sur les suites arithmétique et géometrique

par Flora2 » 23 Mai 2009, 21:18

*** ARCHIVEE ***



Maks
Membre Relatif
Messages: 474
Enregistré le: 14 Mai 2009, 21:03

par Maks » 23 Mai 2009, 21:27

Bonsoir,
et si tu partais d'une suite géométrique, pour ensuite faire les opérations inverses (tout en restant avec une suite d'entiers positifs croissante) ?

Maks
Membre Relatif
Messages: 474
Enregistré le: 14 Mai 2009, 21:03

par Maks » 23 Mai 2009, 21:29

Ah, il faut en plus que ta suite de départ soit arithmétique ?

Avatar de l’utilisateur
Ericovitchi
Habitué(e)
Messages: 7853
Enregistré le: 18 Avr 2009, 13:24

par Ericovitchi » 23 Mai 2009, 21:46

Commence par partir de ta suite arithmétique a a+r a+2r
tu fais les opérations que l'on te dit et tu exprimes que les 3 nombres auxquels tu es arrivés sont en progression géométrique et regardes ce que ça donne

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 22:14

*** ARCHIVEE ***

Avatar de l’utilisateur
Ericovitchi
Habitué(e)
Messages: 7853
Enregistré le: 18 Avr 2009, 13:24

par Ericovitchi » 23 Mai 2009, 22:21

pars d'une suite arithmétique (sous la forme a-k , a , a+k par exemple)

fais les opérations que l'on te dis a-k-2 , a+2 , 2a+2k
et dis que c'est une suite géométrique

3 équations et beaucoup d'inconnues mais tu sais que ce sont des entiers. essayes de te débarrasser des a et k et qu'il n'y ait plus qu'une équation en p et q.

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 22:23

*** ARCHIVEE ***

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 22:24

*** ARCHIVEE ***

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 22:48

*** ARCHIVEE ***

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 22:54

*** ARCHIVEE ***

Avatar de l’utilisateur
Ericovitchi
Habitué(e)
Messages: 7853
Enregistré le: 18 Avr 2009, 13:24

par Ericovitchi » 23 Mai 2009, 22:58

c'est bien et ça n'est pas insolvable
Pars effectivement de ton système
u0-2=v0
u0+r+2=v0 q
2u0+4r=v0 q^2

élimines u0 et r
u0=V0+2
r=V0q-v0-4 et remplaces dans la 3
4V0q-2V0-12=V0q^2
Alors c'est là l'astuce, il faut écrire ça V0 .(-q^2+4q-2)= 12
et se dire que ce sont des nombres entiers et déjà que V0 est divisible par 12. On trouve facilement après car q ne peut pas prendre beaucoup de valeurs

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 23:13

*** ARCHIVEE ***

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 23:17

*** ARCHIVEE ***

Flora2
Messages: 9
Enregistré le: 23 Mai 2009, 21:07

par Flora2 » 23 Mai 2009, 23:35

*** ARCHIVEE ***

Le Chaton
Membre Irrationnel
Messages: 1335
Enregistré le: 12 Oct 2008, 19:00

par Le Chaton » 23 Mai 2009, 23:52

Bonsoir pourquoi as tu retiré ton premier message ?
Comment nous on fait pauvre lecteur pour suivre ?
Il était pas gênant ce message pourtant...

Timothé Lefebvre
Membre Légendaire
Messages: 12478
Enregistré le: 14 Déc 2005, 12:00

par Timothé Lefebvre » 24 Mai 2009, 10:16

Bonjour Flora2,

ton comportement est tout simplement crétin.
Pourquoi supprimer tes messages dès que tu as terminé ton exercice ?
Ca ne t'es pas venu à l'idée qu'ils pourraient servir à d'autres personnes en difficultés sur le même exercice ?

J'ai restauré tous tes messages, sauf le premier que tu as modifié toi-même.

J'espère (pour toi) que cela ne se reproduira plus.

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 45 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite