DM pour le 6 novembre

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
morganne10
Messages: 1
Enregistré le: 31 Oct 2008, 11:52

DM pour le 6 novembre

par morganne10 » 31 Oct 2008, 12:24

bonjour
j'ai un DM de maths a rendre pour le 6 novembre et j'ai un probleme pour l'exercice suivant:
montrer que pour a differnet de 0 on a :
ax² + bx + c=a[(x + b/2a)² - b² - 4ac/4a²
(que b sur 2a) (b²-4ac le tout sur 4a²)



Dr Neurone
Membre Complexe
Messages: 2875
Enregistré le: 17 Nov 2007, 19:03

par Dr Neurone » 31 Oct 2008, 12:49

Bonjour Morganne10

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 31 Oct 2008, 13:15

bonjour,

a[(x + b/2a)² - (b² - 4ac)/4a²]
il suffit de développer cette expression pour retrouver la première

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 31 Oct 2008, 13:41

c'est judicieux ^^ même si c'est toujours intéressant de comprendre la théorie sur la résolution des équations du 2nd degré :)

fisso
Messages: 4
Enregistré le: 28 Avr 2008, 14:26

par fisso » 31 Oct 2008, 15:41

ax²+bx+c
==>a(x²+bx/a+c/a)
==>a[(x+b/2a)²-b²/4a²+c/a]
==>a[(x+b/2a)²-b²/4a²+4ac/4a²]
==>a[(x+b/2a)²-(b²-4ac)/4a²]

voila morgane jpr ke ca t'aide, si tu en comprends pas koi ke ce soit, envoi un post et je texplik.

Timothé Lefebvre
Membre Légendaire
Messages: 12478
Enregistré le: 14 Déc 2005, 12:00

par Timothé Lefebvre » 31 Oct 2008, 15:43

Salut, va voir ici, tu trouveras sans doute ton bonheur !

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 83 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite