Bonjour, voici le calcul :
Calculer ;) x²/(;)1+x²) dx avec x = sht
x = -ch(t)
x²-1 = ch²(t) - 1 = sh²(t)
x² = ch²(t)
dx = -sh(t) dt
S [x²/V(x²-1)] dx = - S [(ch²(t)/sh(t)).sh(t)] dt = - S ch²(t) dt
ch(t) = (1/2).(e^t + e^-t)
ch²(t) = (1/4).(e^2t + 2 + e^-2t)
S [x²/V(x²-1)] dx = - (1/4). S e^2t dt - (1/2). S dt - (1/4). S e^-2t dt
S [x²/V(x²-1)] dx = - (1/8 ).e^2t - (1/2).t + (1/8 ).e^-2t
S [x²/V(x²-1)] dx = -(1/2).t - (1/8 ).[e^2t - e^-2t]
S [x²/V(x²-1)] dx = -(1/2).t - (1/4).sh(2t) + K
S [x²/V(x²-1)] dx = -(1/2).argch(-x)) - (1/4).sh(2.argch(-x))
S (x²/Vx²+1) dx = 1/8 e^2t ½ t 1/8 e^-2t
S (x²/Vx²+1) dx = - ½ t + 1/8 (e^2t e^-2t)
S (x²/Vx²+1) dx = - ½ t + ¼ ch(2t)
S (x²/Vx²+1) dx = - ½ arg sh(x) + ¼ ch (2arg sh(x))
Merci !
