DM de maths 1ère S sur Fonctions et variations associés et équations et inéquations
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
ducan
- Messages: 5
- Enregistré le: 19 Oct 2012, 19:21
-
par ducan » 19 Oct 2012, 19:25
Bonjour à tous et à toutes
Je suis en 1ère S cette année et j'aimerai comment résoudre cette équation 2(x+4)²=9 .Il me semble qu'il faut utiliser l'identité remarquable (a+b)² mais je ne suis même pas sur car cette année c'est difficile je trouve , donc pourriez-vous m'aider svp ?
Cordialement
-
Kikoo <3 Bieber
- Membre Transcendant
- Messages: 3814
- Enregistré le: 28 Avr 2012, 09:29
-
par Kikoo <3 Bieber » 19 Oct 2012, 19:28
Salut,
Ramène 9 à gauche et factorise par l'identité a²-b²
-
ducan
- Messages: 5
- Enregistré le: 19 Oct 2012, 19:21
-
par ducan » 19 Oct 2012, 19:29
Donc si j'ai bien compris je fais 2(x+4)²-9=0 ?
-
Kikoo <3 Bieber
- Membre Transcendant
- Messages: 3814
- Enregistré le: 28 Avr 2012, 09:29
-
par Kikoo <3 Bieber » 19 Oct 2012, 19:31
ducan a écrit:Donc si j'ai bien compris je fais 2(x+4)²-9=0 ?
Exact, et donc tu n'as plus qu'à appliquer a²-b² en remarquant que 2(x+4)² est la carré d'un certain nombre.
-
ducan
- Messages: 5
- Enregistré le: 19 Oct 2012, 19:21
-
par ducan » 19 Oct 2012, 19:36
Parce que en effet moi je fais 2(x²+8x+16)-9=0
=2x²+16x+32-9=0
=2x²+16+23=0
-
Billball
- Membre Complexe
- Messages: 2669
- Enregistré le: 31 Mar 2006, 19:13
-
par Billball » 19 Oct 2012, 19:44
ducan a écrit:Parce que en effet moi je fais 2(x²+8x+16)-9=0
=2x²+16x+32-9=0
=2x²+16+23=0
ben si t'as vu le discriminant tu peux
-
ducan
- Messages: 5
- Enregistré le: 19 Oct 2012, 19:21
-
par ducan » 19 Oct 2012, 19:48
Delta=b²-4ac
delta=(16)²-4x2x23
delta=256-184
delta=72
Delta >0 on a 2 solutions
x1=(-b+/Racine carrée de delta)/2a
x2=(-b-racine carrée de delta)/2a
-
Kikoo <3 Bieber
- Membre Transcendant
- Messages: 3814
- Enregistré le: 28 Avr 2012, 09:29
-
par Kikoo <3 Bieber » 19 Oct 2012, 19:53
Ok, mais ce n'est pas très élégant de passer par le discriminant. Je ne dis pas que factoriser par a²-b² l'est mais c'est une façon plus courte et pratique (car plus visible).
-
ducan
- Messages: 5
- Enregistré le: 19 Oct 2012, 19:21
-
par ducan » 19 Oct 2012, 19:55
Pourrais-tu m'expliquer ça en détaillant les calculs s'il te plaît ?
-
Kikoo <3 Bieber
- Membre Transcendant
- Messages: 3814
- Enregistré le: 28 Avr 2012, 09:29
-
par Kikoo <3 Bieber » 19 Oct 2012, 20:04
ducan a écrit:Pourrais-tu m'expliquer ça en détaillant les calculs s'il te plaît ?
Non, je t'ai déjà tout expliqué

Factorise en remarquant la forme a²-b², que tu connais bien.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 89 invités