Lunules d'hippocrate.

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Misty 2
Messages: 1
Enregistré le: 12 Nov 2005, 12:35

Lunules d'hippocrate.

par Misty 2 » 12 Nov 2005, 12:37

Bonjour tout le monde! j'ai un dm de maths pour lundi et je suis completement perdue sur un exercice. Ne men voulez pas je n'ai pas de dessin...
voila lexercice:
On a construit des demi cercle ayant pour diamètre les trois cotés d'un triangle rectangle. Il faut montrer que la somme des aires des lunules ou croissants sont egales a laire du triangle...
Voila jespere que vous pourrez maider++



fan de maths
Membre Naturel
Messages: 81
Enregistré le: 25 Oct 2005, 20:30

par fan de maths » 12 Nov 2005, 14:41

Bonjour,

Disons que les côtés du triangle ont pour longueur a, b, et c(pour l'hypoténuse).
L'aire du demi-cercle de diamètre a est a²;)/8 et l'aire du demi-cercle de diamètre b est b²;)/8.
Après tu sais que la somme des aires des deux demi-cercle et du triangle rectangle moins l'aire du troisième demi-cercle te donne l'aire des deux lunules.
Soit a²;)/8 + b²;)/8 + ab/2 - c²;)/8 = [;)(a²+b²-c²)+4ab]/8
Comme c²=a²+b²; a²+b²-c²=0.
Donc l'aire des lunules est (;)*0+4ab)/8 soit ab/2 qui est également l'aire du triangle rectangle.

Voilà

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 50 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite