Voici mon exercice:
On considère la fonction f définie sur
Partie A:
Soit g la fonction définie sur
1) Dresser le tableau de variations de la fonction g sur
J'ai trouvé: g'(x) =
g est décroissante de ]-00 ; 0] puis croissante de [0 ; + 00[
Limite de g(x) en - 00 = limite de g(x) en + 00 = + 00
2) En déduire le signe de g sur
Le minimum de g est 0 donc g est positive
3) Justifier que
Comme g(x) > 0 alors
Partie B:
1)a) Calculer les limites de f en + 00 et - 00
En + 00 j'ai trouvé 0
C'est en - 00 que je n'arrive pas à enlever la forme indéterminée ???
Quelqu'un pour m'aider ???
MERCI !!!
