Histogramme et détermination d'une médiane
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
clem43
- Messages: 4
- Enregistré le: 20 Mar 2017, 14:05
-
par clem43 » 20 Mar 2017, 14:13
Bonjour à tous,
Je viens à vous pour une question concernant une détermination graphique d'une médiane de deux façons : l'une avec un histogramme (déjà représenté dans l'exo) et une autre avec la courbe des effectifs cumulés croissants.
Pour cette deuxième partie aucun souci, mon problème se situe pour la question avec l'histogramme. Je sais qu'il faut partager l'aire en deux parties égales mais que faire si cela tombe "au milieu" d'une classe ? Dire que la médiane se situe dans cette classe sans plus de précision ? Ou essayer de faire un calcul en tenant compte de l'amplitude de la classe (interpolation linéaire me semble t'il..) Personnellement, je pencherai pour la première solution car pour moi la première reviendrait justement à faire la même méthode que pour la courbe des ECC.
Dans l'attente de votre avis, je vous remercie.
Clément,
-
Tiruxa47
- Membre Relatif
- Messages: 343
- Enregistré le: 14 Jan 2017, 16:03
-
par Tiruxa47 » 20 Mar 2017, 14:58
Bonjour,
Ma fois logiquement tu dois trouver le même résultat non ? En quoi est-ce un problème si les deux méthodes ont quelques ressemblances ?
L'avantage de l'histogramme dans ton cas c'est que tu l'as déjà construit d'où un gain de temps non ?
Ceci dit il faut bien sûr "interpoler" pour trouver la valeur de la médiane.
-
clem43
- Messages: 4
- Enregistré le: 20 Mar 2017, 14:05
-
par clem43 » 20 Mar 2017, 15:19
Oui même chose mais c'est par rapport à la question....on me demande une valeur graphique approchée donc mon interrogation était de savoir si ou non il fallait pousser le calcul à l'interpoltion ou juste se limiter à dire que la médiane appartient à une certaine classe.
-
Tiruxa47
- Membre Relatif
- Messages: 343
- Enregistré le: 14 Jan 2017, 16:03
-
par Tiruxa47 » 20 Mar 2017, 15:35
Tout dépend des valeurs en présence, quelle est la classe dans laquelle est située la médiane, c'est à dire quelle amplitude et quel effectif ?
D'autre part quel est l'effectif total ? (dans le cas où ce sont des effectifs qui ont été représentés et non pas fréquences).
Je suppose que tu dois pouvoir interpoler graphiquement sans faire de calcul ou bien donner une valeur "à la louche"...
-
clem43
- Messages: 4
- Enregistré le: 20 Mar 2017, 14:05
-
par clem43 » 20 Mar 2017, 15:44
Effectif de 1100 salariés représentés dans un histogramme où un carré représente 10 salariés...Dans le détail :
- 120 salariés entre 1 et 1,2 k€
- 150 entre 1.2 et 1.5 k€
- 220 entre 1.5 et 1.7 k€
- 360 entre 1.7 et 2 k€
- 175 entre 2 et 2.5 k€
- 75 entre 2.5 et 3 k€
Classes sous la forme [a;b[
Pour la médiane, il faut séparer en deux parties de 55 carreaux chacun. On tombe dans la classe entre 1.7 et 2k€.
Donc à ton avis je m'arrête là ? Ou je précise un peu plus...il me semble que je trouvais Me = 1.75.
-
Tiruxa47
- Membre Relatif
- Messages: 343
- Enregistré le: 14 Jan 2017, 16:03
-
par Tiruxa47 » 20 Mar 2017, 16:26
Oui c'est bien 1.75
La classe 1,7 à 2 comprend 36 carreaux
D'autre part, jusqu'à 1,7 on a 49 carreaux, il en manque donc 6 pour atteindre la moitié de l'effectif total (55 carreaux)
6 étant le sixième de 36, pour avoir la médiane on ajoute donc le sixième de l'amplitude de la classe soit 0,3.
La médiane est donc 1,7 + (1/6) 0,3 = 1,7+0,05=1,75
Cela doit être encore plus clair sur le graphique
-
clem43
- Messages: 4
- Enregistré le: 20 Mar 2017, 14:05
-
par clem43 » 20 Mar 2017, 16:33
Parfait !!!
Mais en fait ce qu'on fait là c'est le même principe que la courbe des effectifs cumulés croissants... (qui consiste justement à interpoler sur chaque intervalle...
Donc c'est pour ça je trouve c'est redondant mais bon je pense que c'est cela qui est demandé.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 65 invités