Fonction et ploynômes :o 1ères S

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Baldec11
Membre Naturel
Messages: 11
Enregistré le: 23 Oct 2011, 17:27

Fonction et ploynômes :o 1ères S

par Baldec11 » 23 Oct 2011, 17:46

Coucou :help: ,
J'ai un DM de maths à faire, et je n'y arrive pas, mais alors pas du tout. :mur:
J'ai beau essayé en vain.

L'exercice porte en ceci:
1° On considère la fonction 'f' définie pour tout réel 'x' par: f(x)=ax²+bx+c
Où a,b et c sont des réels fixes.
a) Déterminer a,b et c pour que pour tout réel x on ait: f(x)-f(x-1)=x
b) Pour tout entier naturel n, on pose S1= 1+2...+n
Montrer que S1= f(n)-f(0). Donner une forme factorisée de S1.
c) Calculer la somme 1+2...+99.
2° Soit la fonction 'g' définie pour tout réel x par: g(x)=ax^3+bx²+cx+d.
Où a, b, c et d sont des réels fixes.
a) Déterminer a, b, c et d pour que pour tout réel x on ait: g(x)-g(x-1)=x²
b) Montrer que S2=g(n)-g(0). Donner une forme factorisée de S2.
c) Pour tout entier naturel n, on pose S2=1²+2²...+n²
Calculer la somme 1+4...+9801.

Merci à vous, moi je galère :mur:



XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 23 Oct 2011, 17:48

Quel problème sur 1a) ?

Baldec11
Membre Naturel
Messages: 11
Enregistré le: 23 Oct 2011, 17:27

par Baldec11 » 23 Oct 2011, 17:51

Je ne sais pas comment trouver a, b et c :marteau:

Baldec11
Membre Naturel
Messages: 11
Enregistré le: 23 Oct 2011, 17:27

par Baldec11 » 23 Oct 2011, 18:03

Quel est la méthode pour trouver ces réels?

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 23 Oct 2011, 18:11

Ecrit en fonction de a, b et c l'expression "f(x)-f(x-1)" déjà ?

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 08:35

Bonjour, j'ai le même type d'exo
je trouve : a(2x-1) + b = x
qu'est-ce que j'en fais pour trouver a,b,c ?

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 24 Oct 2011, 08:41

Par identification tu peux trouver a et b normalement?

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 09:17

Comment tu fais?

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 24 Oct 2011, 09:20

Les termes en "x" de chaque côté et les termes constants de chaque côté...

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 12:07

Donc j'obtiens : x(2a-1) +b =0
2a-1 = 0 donc a=1/2
-a+b=0 donc b=1/2
et c alors tu mets c=0 ?

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 12:09

Pour la question b ?

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 24 Oct 2011, 12:16

pons11 a écrit:Donc j'obtiens : x(2a-1) +b =0
2a-1 = 0 donc a=1/2
-a+b=0 donc b=1/2
et c alors tu mets c=0 ?


Attention te manque un "-a" dans ton expression (mais la résolution est bonne).

Pour c, tu mets ce que tu veux en fait. c peut être n'importe quel réel :)

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 24 Oct 2011, 12:17

pons11 a écrit:Pour la question b ?



Pour la b) c'est un classique :

f(n) - f(n-1) = n
f(n-1) - f(n-2) = n-1
...
f(2) - f(1) = 2
f(1) - f(0) = 1

Tu sommes tout de chaque côté ^^

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 14:14

je ne vois pas , explique
mais j'avais donné comme forme factorisée : S1 =n(n+1)/2

Pour c) je trouve 99x100/2= 4950

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 24 Oct 2011, 14:47

Je vois pas comment t'expliquer plus !

Sinon pour la variable c je dirais que tu as une autre condition non indiquée ici pour déterminer sinon c'est bizarre ^^

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 15:42

Alors dis moi si ma factorisation est ok.
Tant pis pour moi si je pige pas .
J'ai attaqué le 2) et j'obtiens a=1/3, b= 3/2 et c =1/6 , j'espère ne pas mettre trompé dans le développement. Je sens que je vais encore galérer pour les suites. Merci pour les a,b,c je crois que j'ai pigé maintenant comment les trouver

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 24 Oct 2011, 16:14

pons11 a écrit:je ne vois pas , explique
mais j'avais donné comme forme factorisée : S1 =n(n+1)/2

Pour c) je trouve 99x100/2= 4950


Ouais c'est bon ça

pons11
Membre Naturel
Messages: 17
Enregistré le: 24 Oct 2011, 08:31

par pons11 » 24 Oct 2011, 17:06

J'ai refais mes calculs et pour g(x)-g(x-1) =x^2
on a a=1/3 b=1/2 et c=1/6

Baldec11
Membre Naturel
Messages: 11
Enregistré le: 23 Oct 2011, 17:27

par Baldec11 » 29 Oct 2011, 14:38

pons11 a écrit:Bonjour, j'ai le même type d'exo
je trouve : a(2x-1) + b = x
qu'est-ce que j'en fais pour trouver a,b,c ?


Comment trouves-tu a(2x-1)+b=x? :mur:

Baldec11
Membre Naturel
Messages: 11
Enregistré le: 23 Oct 2011, 17:27

par Baldec11 » 30 Oct 2011, 15:00

pons11 a écrit:Alors dis moi si ma factorisation est ok.
Tant pis pour moi si je pige pas .
J'ai attaqué le 2) et j'obtiens a=1/3, b= 3/2 et c =1/6 , j'espère ne pas mettre trompé dans le développement. Je sens que je vais encore galérer pour les suites. Merci pour les a,b,c je crois que j'ai pigé maintenant comment les trouver


Comment trouves-tu a,b et c :hein: . Avec la méthode du 1, je ne trouve pas :mur:

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 100 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite