Exercice Sur Equation Differentielle

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
cece53
Messages: 9
Enregistré le: 30 Sep 2007, 11:38

Exercice Sur Equation Differentielle

par cece53 » 20 Jan 2008, 12:37

Bonjour! J'ai besoin d'aide pour cet exercice svp.

Le taux d'alcoolémie f(t) (en gL-1) d'une personne ayant absorbé, à jeun, une certaine quantité d'alcool vérifie, sur R+, l'équation différentielle:
(E): y'+y=ae-t
où t est le temps écoulé après l'ingestion (exprimé en heures), et a une constante qui dépend des conditions expérimentales.

1) On pose, pour tout t E R+ : g(t)=f(t)et
Démontrer que g est une fonction affine.
Exprimer f(t) en fonction de t et de a.

2) Dans cette question on suppose que a=5.

a) Etudier les variations de f et tracer sa courbe.
Déterminer le taux d'alcoolémie maximal et le temps au bout duquel il est atteint.

b) Donner une valeur du délai T (à l'heure près par excès) au bout duquel le taux d'alcoolémie de cette personne est inférieur à 0.5 gL-1.



johnjohnjohn
Membre Rationnel
Messages: 843
Enregistré le: 24 Oct 2006, 11:00

par johnjohnjohn » 20 Jan 2008, 13:26

cece53 a écrit:
Le taux d'alcoolémie f(t) (en gL-1) d'une personne ayant absorbé, à jeun, une certaine quantité d'alcool vérifie, sur R+, l'équation différentielle:
(E): y'+y=ae-t
où t est le temps écoulé après l'ingestion (exprimé en heures), et a une constante qui dépend des conditions expérimentales.

1) On pose, pour tout t E R+ : g(t)=f(t)et
Démontrer que g est une fonction affine.
Exprimer f(t) en fonction de t et de a.





g(t)=f(t).e^t donc f(t)=g(t).e^(-t)

Tu sais que f vérifie y'+y=a.e^(-t). (E)

A toi d'introduire f exprimé en fonction de g dans l'équation (E) et de nous faire un compte rendu .

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 61 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite