Equation de tangeante

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
lematheux22
Messages: 3
Enregistré le: 29 Nov 2007, 21:41

Equation de tangeante

par lematheux22 » 31 Jan 2008, 19:21

Bonsoir,
je suis bloqué dans un dm de maths concernatn les equations de tangeante, j'ai besoin de quelques explications :marteau:

Voici l'exo :
f est une fonction polynome du 2nd degre telel que f(x)=ax²+bx+c (a n'est pas égal à 0). on note C sa courbe représentative ds un repere choisi et A et B deux points de C d'abcisses respectives alpha et beta telles qu'ils ne sont pas =.

1) demontrez que la tangeante en A à C a pour equation y=(2a alpha + b) x + c -a alpha²

2) trouver de même une equation du point B à C (la courbe)

3) demontrez que ces tangeantes se coupent en point d'abcisse (alpha + beta)/2

4) verifiez que f(beta) - f(alpha) = (beta-alpha) f'(alpha+beta)/2

5) deduisez en que la tangeante à C au point d'abcisse (alpha+beta)/2 est parallelle à (AB)



stoomer
Membre Relatif
Messages: 223
Enregistré le: 23 Déc 2007, 10:47

par stoomer » 31 Jan 2008, 19:42

où es tu bloqué?

lematheux22
Messages: 3
Enregistré le: 29 Nov 2007, 21:41

par lematheux22 » 31 Jan 2008, 20:10

ce sont les questions 1 et 2 qui me genent sinon la suite je peux le faire tout seul :marteau:

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 31 Jan 2008, 20:35

Bonsoir

F(x) = ax² + bx +c est une PARABOLE de graohe(C)

Tu calcules f'

1) T1 est la tangente à (C ) au point d' abscisse alpha
T = f' (alpha)(x-alpha) +f(alpha)

2) De m^pour T2 eb d' abscisse béta

3) T1 inter T2

4)....

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 54 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite