Équation de droite
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 10 Mai 2013, 09:04
Bonjour.
Voilà j'ai un exercice mais je ne suis pas totalement sur de mes réponses et de plus il y a quelque chose que je ne comprends pas.
On considere un repre othonormé (O,I,J)
1. Tracer les droites :
D1:y=x+2
D2:y=-2/3x-1
D3:y=-4x+5
2. Ces droites forment un triangle ABC
Déterminer les coordonnées des points A, B et C.
C'est cette question qui je ne comprends pas :help:
-
annick
- Habitué(e)
- Messages: 6291
- Enregistré le: 16 Sep 2006, 09:52
-
par annick » 10 Mai 2013, 09:33
Bonjour,
il te suffit de chercher les points d'intersection des droites prises deux à deux.
Ainsi, si ta première droite a pour équation y=ax+b et la deuxième y=a'x+b', alors tu égalises ax+b=a'x+b' et tu trouves x=x0. Tu injecte ensuite cette valeur dans une des deux équations et tu trouves y0 et tu as le point d'intersection (x0;y0)
-
jlq
- Membre Naturel
- Messages: 85
- Enregistré le: 09 Mai 2013, 09:20
-
par jlq » 10 Mai 2013, 09:41
Si tu as tracé les droites tu vois quelles se coupent suivant un triangle.
Pour résoudre la question, il suffit par exemple d'écrire que le y de la première équation est égal au y de la deuxième équation.
Cela donne une équation en x que tu es capable de résoudre.
Ensuite pour trouver y tu reprends la première équation et remplace x par sa valeur.
Tu as alors trouvé x et y pour le premier point.
Pour le second point il faut faire de même avec les équations 2 et 3
Pour le point3, prendre les équation 1 et 3
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 10 Mai 2013, 10:47
Bonjour tous d'abord merci d'avoir répondu, je n'ai pas trop compris ce que vous m'avez expliquer.
Pour annick je ne vous pas qu'elle valeur je peux injecter
j'ai fait : mx+p = mx'+p'
Mais pourquoi x = 0 ?
Pour jlq :
J'ai fait Y1 = Y2 mais a partir de la je suis bloquer..
Désoler
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 11 Mai 2013, 08:40
Vous pouvez maidez ?
-
XENSECP
- Habitué(e)
- Messages: 6387
- Enregistré le: 27 Fév 2008, 19:13
-
par XENSECP » 11 Mai 2013, 09:25
Tu as résolu les 3 systèmes d'équations qui te donne les coordonnées (x,y) de chaque points (A, B et C) ?
-
jlq
- Membre Naturel
- Messages: 85
- Enregistré le: 09 Mai 2013, 09:20
-
par jlq » 11 Mai 2013, 09:55
Tu as du faire
D1:y=x+2
D2:y=-2/3x-1
y1=y2 soit x+2=-2/3x-1
soit 5/3x=-3
x=-9/5
Après on injecte dans D1 ou D2
Dans D1, y=-9/5+2=1/5
Le premier point a pour coordonnées (-9/5;1/5)
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 11 Mai 2013, 11:49
XENSECP a écrit:Tu as résolu les 3 systèmes d'équations qui te donne les coordonnées (x,y) de chaque points (A, B et C) ?
Non je n'est ps résolu les equations
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 11 Mai 2013, 11:57
Ah oui d'accord j'ai compris donc maintenant je fais
D1:y=x+2
D3:y=-4x+5
Y1=Y3 soit
x+2=-4x+5
x+4x=-2+5
5x=3
x=3/5
D1, y= 3/5+2=2,6
B a pour coordonées (0.6;2.6)
-
jlq
- Membre Naturel
- Messages: 85
- Enregistré le: 09 Mai 2013, 09:20
-
par jlq » 11 Mai 2013, 12:33
xSecreet a écrit:Ah oui d'accord j'ai compris donc maintenant je fais
D1:y=x+2
D3:y=-4x+5
Y1=Y3 soit
x+2=-4x+5
x+4x=-2+5
5x=3
x=3/5
D1, y= 3/5+2=2,6
B a pour coordonées (0.6;2.6)
c'est bon cette fois.
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 11 Mai 2013, 12:38
Et donc je trouve C(1,8;-2.2)
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 11 Mai 2013, 12:40
Ma deuxieme question est determiné les coordonnées du milieu M de [AB), N de [BC] etc...
Il faut utiliser la formule M(xA+xB/2);(YA+YB/2) ?
-
jlq
- Membre Naturel
- Messages: 85
- Enregistré le: 09 Mai 2013, 09:20
-
par jlq » 11 Mai 2013, 18:16
xSecreet a écrit:Ma deuxieme question est determiné les coordonnées du milieu M de [AB), N de [BC] etc...
Il faut utiliser la formule M(xA+xB/2);(YA+YB/2) ?
Oui c'est exactement ça
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 12 Mai 2013, 11:14
J'ai une autre question ou je dois determiner les quotients : BG / BP, AG/AN et CG/CM
G ( 1/5 ; 1/5)
Il faut que je fasses
BG = ( XG-XB)² + (YG-YB)
BG = ( 1/5-0.6)² + (1/5-2.6)²
BG = 0.16 + 5.76
BG = Racine carré de 5.92
BG = 2.43
BP = (XP-XB)² + (YP-YB)²
BP = (1,8-0.6)² + (1.2-2.6)²
BP = 1.44 + 1.96
BP = racine de 3.4
BP = 1.84
BG/BP
-
jlq
- Membre Naturel
- Messages: 85
- Enregistré le: 09 Mai 2013, 09:20
-
par jlq » 12 Mai 2013, 12:59
xSecreet a écrit:J'ai une autre question ou je dois determiner les quotients : BG / BP, AG/AN et CG/CM
G ( 1/5 ; 1/5)
Il faut que je fasses
BG = ( XG-XB)² + (YG-YB)
BG = ( 1/5-0.6)² + (1/5-2.6)²
BG = 0.16 + 5.76
BG = Racine carré de 5.92
BG = 2.43
BP = (XP-XB)² + (YP-YB)²
BP = (1,8-0.6)² + (1.2-2.6)²
BP = 1.44 + 1.96
BP = racine de 3.4
BP = 1.84
BG/BP
Le raisonnement est bon. tu peux finir.
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 12 Mai 2013, 14:52
Jai trouver AG 1,74
AN = 3,72
CG = 2,88
CM = 1,44
-
jlq
- Membre Naturel
- Messages: 85
- Enregistré le: 09 Mai 2013, 09:20
-
par jlq » 12 Mai 2013, 15:12
xSecreet a écrit:Jai trouver AG 1,74
AN = 3,72
CG = 2,88
CM = 1,44
Les calculs ont l'air bon : perso j'aurai laissé les longueurs sous la forme qq chose/5
Exemple BG=Racine((1/5-3/5)^2+(1/5-13/5)^2)=racine(148)/5
-
xSecreet
- Membre Naturel
- Messages: 16
- Enregistré le: 28 Avr 2013, 19:49
-
par xSecreet » 12 Mai 2013, 20:35
Daccord. Merci beaucoup de votre aide.
Grace a vous j'ai tous compris
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 50 invités