Distance entre les centres de cercles qui se croisent

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
nassertom
Messages: 2
Enregistré le: 28 Oct 2013, 00:41

distance entre les centres de cercles qui se croisent

par nassertom » 28 Oct 2013, 01:20

Bonjour,

N'étant plus à l'école depuis longtemps, j'espère avoir posé cette question dans la bonne section.
Je présume que cette question est de niveau lycée.

Ma question est la suivante :
- Quelle formule peu me permettre de calculer la distance entre le centre de deux cercles qui se croisent ?
sachant que je connais l'aire de chacun des cercles ainsi que l'aire de la zone commune que partagent ces cercles.

En d'autres termes, je souhaite construire un diagramme de Venn.
exemple :
- la classe 5e C comporte 10 élèves
- la classe 5e B comporte 15 élèves
- 3 élèves de la 5e C et 2 élèves de la 5e B font du latin
si je devais représenter ces deux classes sous forme de cercle qui se croisent avec en commun les élèves qui font du latin je commencerai par faire dans un premier temps le calcule du rayon de chaque cercle représentant chaque classe :
exemple : R1 = racine de (10 divisé par Pi)
R2 = racine de (15 divisé par Pi)

de ce fait je sais la distance des deux cercles si il ne se croisent pas.
cependant je connais le volume commun qui est de 5 mais je ne sais pas quoi en faire.

Je precise que c'est pour ma culture personnel, et que je n'ai pas un bagage mathématique fort (je n'ai pas suivi de cursus scolaire classique) donc d'avance merci pour vos explications.

Mon but est de pouvoir mettre ces formules sous Excel donc avec des opérateurs relativement simple et non avec des nomenclatures trop spécifique. je précise cela car je suis allé sur Wikipédia et très franchement je ne sais comment transformer les 3/4 des sigles en calcule plus concret.

D'avance merci pour votre aide.
Cordialement,



Tiruxa
Membre Relatif
Messages: 460
Enregistré le: 22 Oct 2013, 09:21

par Tiruxa » 28 Oct 2013, 07:37

Bonjour,
Il s'agit en fait de résoudre le problème "classique" de la chèvre qui broute le pré circulaire.
Sa résolution est connue mais ne donne pas de formule facilement exploitable.
C'est plus un algorithme qu'il faudrait utiliser.

Pour en savoir plus lire (par exemple):
http://serge.mehl.free.fr/exos/chevre_poincar.html#rep

ou bien saisir probleme chevre sur Google.

Avatar de l’utilisateur
chan79
Membre Légendaire
Messages: 10330
Enregistré le: 04 Mar 2007, 19:39

par chan79 » 28 Oct 2013, 09:06

Pour les classes et les latinistes, je vois plutôt un simple tableau à double entrée, facile à compléter

Image

nassertom
Messages: 2
Enregistré le: 28 Oct 2013, 00:41

par nassertom » 28 Oct 2013, 14:32

Bonjour,

Merci pour vos réponses, effectivement l'explication de la chèvre est bien adapté à la problématique exposé.

Cependant, je me rend compte que si j'ajoute une 3eme classe le problème sera un peu plus compliqué à résoudre.

Concernant la modélisation avec des carrés cela me parait effectivement beaucoup plus simple et rapide, cependant je pense que le résultat ne sera pas très précis mais pour la construction sous forme de petite icone cela peut être intéressant.

Je vais creuser plus en profondeur la démonstration de poincaré.
Cordialement,

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 77 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite