Détermination du module et d'un argument de quotient de nombre complexe
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
deesseflo17
- Membre Naturel
- Messages: 63
- Enregistré le: 16 Nov 2007, 18:26
-
par deesseflo17 » 17 Nov 2007, 10:49
Bonjour
Je travaille toujours sur les complexes et j'ai à présent à calculer le module et un argument de quotients de nombre complexe.
a) (1 + i) / (rac3 + i)
b) [2i(1 - i)] / [3 + (3i*rac 3)]
c) [1 + (i * rac3)] / [-1 + (i * rac3)]
je pense qu'il faut utiliser la formule : (z / z') = (r / r') * e^i (téta - téta')
Merci d'avance
-
gol_di_grosso
- Membre Irrationnel
- Messages: 1402
- Enregistré le: 22 Sep 2007, 11:28
-
par gol_di_grosso » 17 Nov 2007, 10:52
par exemple pour avoir un truc de la forme a+bi tu peux multiplier a) (1 + i) / (rac3 + i) par (rac3 - i)/(rac3 - i)
oui ?
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 63 invités