Convergence d'une suite: Aide pour l'encadrement

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
SeifMaths
Membre Naturel
Messages: 54
Enregistré le: 05 Oct 2016, 17:42

Convergence d'une suite: Aide pour l'encadrement

par SeifMaths » 26 Déc 2016, 00:30

Bonjour,

Image

J'ai montré que W est croissante, mais je n'arrive pas à l'encadrer, avez-vous une idée pour le faire?



Avatar de l’utilisateur
Ben314
Le Ben
Messages: 21709
Enregistré le: 11 Nov 2009, 21:53

Re: Convergence d'une suite: Aide pour l'encadrement

par Ben314 » 26 Déc 2016, 00:42

Salut,
Je suis pas sûr que la monotonie de soit bien utile.
Par contre, vu le résultat de la question précédente, tu sait que pour tout tu as .
Donc . . .
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius

SeifMaths
Membre Naturel
Messages: 54
Enregistré le: 05 Oct 2016, 17:42

Re: Convergence d'une suite: Aide pour l'encadrement

par SeifMaths » 26 Déc 2016, 20:25

Ben314 a écrit:Salut,
Je suis pas sûr que la monotonie de soit bien utile.
Par contre, vu le résultat de la question précédente, tu sait que pour tout tu as .
Donc . . .

Autrement dit, 1/n converge et g converge car -1/(1+n) converge donc Wn converge? Je ne suis pas encore convaincu :/

Avatar de l’utilisateur
Lostounet
Membre Légendaire
Messages: 9665
Enregistré le: 16 Mai 2009, 11:00

Re: Convergence d'une suite: Aide pour l'encadrement

par Lostounet » 26 Déc 2016, 22:49

La quantité -1/(n+1) tend vers 0. Or la fonction g est dérivable sur R elle est donc continue en 0 la limite de g(-1/(n+1)) est donc g(0)

Et g(0)*-1/n tend vers 0 donc finalement vers quoi tend Wn?
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.

SeifMaths
Membre Naturel
Messages: 54
Enregistré le: 05 Oct 2016, 17:42

Re: Convergence d'une suite: Aide pour l'encadrement

par SeifMaths » 26 Déc 2016, 23:10

Bonjour,
Vu que l'on avait vu ce chapitre il y a longtemps, je ne me rappelle plus des détails.. Je me rappelle seulement qu'il fallait avoir la monotonie et l'encadrement d'une suite pour déterminer sa convergence, mais c'est clair maintenant
Je vous remercie les deux!

Avatar de l’utilisateur
Lostounet
Membre Légendaire
Messages: 9665
Enregistré le: 16 Mai 2009, 11:00

Re: Convergence d'une suite: Aide pour l'encadrement

par Lostounet » 26 Déc 2016, 23:37

Une suite croissante et majorée est convergente c'est vrai mais ici nous avons une écriture explicite de la suite donc nous pouvons l'exploiter.
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 100 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite