Pb Complexe TS

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Garfield
Membre Naturel
Messages: 13
Enregistré le: 30 Nov 2005, 14:41

Pb Complexe TS

par Garfield » 30 Nov 2005, 14:46

Voila j'ai un probleme avec ce devoir, si quelqu'un pouvait m'aider !

Dans le plan complexe rapporté à un repère orthonormal direct ( O, u->, v->), on considère l’application f du plan dans lui même qui, à tout point M d’affixe z, associe le point M’ d’affixe z’ telle que : z’ = z²- 4z

1) Soient A et B les points d’affixes ZA = 1-i et ZB = 3+i
a) Calculer les affixes des points A’ et B’ images des points A et B par f.
b) On suppose que deux points ont la même image par f. Démontrer qu’ils sont confondus ou que l’un est l’image de l’autre par une symétrie centrale que l’on précisera.

2) Soit I le point d’affixe -3
a) Démontrer que OMIM’ est un parallélogramme si et seulement si z²-3z+3 = 0.
b) Résoudre l’équation z²-3z+3 = 0.

3) a) Exprimer (z’+4) en fonction de (z-2). En déduire une relation entre |z’+4| et |z-2| puis entre arg(z’+4) et arg(z-2).
b) On considère les points J et K d’affixes respectives zJ=2 et zK=-4. Démontrer que tous les points M du cercle (C) de centre J et de rayon 2 ont leur image M’ sur un même cercle que l’on déterminera.
c) Soit E le point d’affixe zE= -4-3i. Donner la forme trigonométrique de (zE+4) et à l’aide du 3.a) démontrer qu’il existe deux points dont l’image par f est le point E. Préciser sous forme algébrique l’affixe des ces deux points.



Fract83
Membre Relatif
Messages: 110
Enregistré le: 25 Nov 2005, 13:35

par Fract83 » 30 Nov 2005, 14:59

Re,

Meme remarque que pour ton autre message...

As-tu seulement essaye de reflechir a ton probleme ? Ou ton premier reflexe a-t-il ete de directement poster sur ce forum ?

Si tu as reflechi au probleme, qu'est-ce que tu ne comprends pas ?

Bonne journee.

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 40 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite