Salut, tu peux noter
)
la première fonction et
)
la deuxième pour plus de simplicité.
Je vois plusieurs méthodes :
Méthode n°1:
Pour comparer, il est clair qu'il faut comparer sur des intervalles. Mais, avant cela, tu devrais regarder quel est l'intervalle de chaque fonction à regarder (le domaine de définition). Ensuite, tu pourrais faire un tableau de valeur pour voir quand chaque fonction est croissante, décroissante, égale.
Ensuite, tu peux observer qu'il y a un terme commun aux deux fonctions :

(positif et négatif).
Méthode n°2:
Je tiens juste à signaler que cette méthode est pas sûre du tout et n'est pas très mathématique. Si quelqu'un peut corriger ce qui va suivre, ce serait sympathique.
Voici : je pars de l'exemple suivant : comparer

et

. Dès lors je sais que ces 2 expressions sont

(et strictement) suivant

. Donc,

(où les points sont à compléter par la comparaison). Et du coup, il faut regarder selon la valeur de

par rapport à

. Si

, les membres de l'(in)équation sont égaux, si

alors le signe de comparaison entre les membres sera

, etc. Mais attentionà l'ordre des 2 membres au départ et à la fin.
Voilà j'espère t'avoir aidé.