Aide VECTEURS 2nde SVP :/

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
popo123456789
Messages: 6
Enregistré le: 16 Oct 2011, 18:00

Aide VECTEURS 2nde SVP :/

par popo123456789 » 18 Jan 2012, 11:36

Bonjour !

Je dois faire 2 exercices pour demain ( j'ai essayé de les réaliser plusieurs fois au brouillon tout de même mais sans réussite .. :--: )

J'espère que quelqu'un pourra m'aider ...




Dans un repère, on donne les points :
A( -2 ; 4 ) B ( -3 ; 5 ) et D ( 4 ; 6 )


Déterminer les coordonnées du point C tel que ABCD soit un parallélogramme des deux façons suivantes :
a/ Utiliser l'égalité
--> -->
AB = DC (Vecteurs ^^ )


b/ Utiliser l'égalité
--> --> -->
AC = AB + AD



Merci d'avance pour votre aide ...


Ensuite pour le 2ème exercice j'ai réussi tout sauf la dernière question :

f et g sont les fonctions définies sur [ -4 ; 4 ] par :
f(x) = ( 2 - x ) (x² + x - 7 ) et g(x) = 4 - x²


(Donc là il faut tracer les courbes f et g à l'écran d'une calculatrice )

et la question que je ne sais pas résoudre :

d) Résoudre graphiquement l'inéquation f(x) < ( signe : INFERIEUR OU EGAL ) g(x)

Merci d'avance . :happy2:



cfuertes
Membre Naturel
Messages: 24
Enregistré le: 09 Jan 2012, 15:10

par cfuertes » 18 Jan 2012, 12:03

pour le premier il faut utiliser les coordonnées:

si vecteur AB = vecteur DC alors (Xb-Xa;Yb-Ya) = (Xc-Xd;Yd-Yc)

pour la deuxieme formule, pareil, avec les coordonnées...

pour ta derniere question tu dois etudier le signe de f(x)-g(x) et trouver la valeur pour lequel cela vaut 0

jeffb952
Membre Relatif
Messages: 232
Enregistré le: 05 Jan 2012, 11:26

par jeffb952 » 18 Jan 2012, 12:14

popo123456789 a écrit:Bonjour !

Je dois faire 2 exercices pour demain ( j'ai essayé de les réaliser plusieurs fois au brouillon tout de même mais sans réussite .. :--: )

J'espère que quelqu'un pourra m'aider ...




Dans un repère, on donne les points :
A( -2 ; 4 ) B ( -3 ; 5 ) et D ( 4 ; 6 )


Déterminer les coordonnées du point C tel que ABCD soit un parallélogramme des deux façons suivantes :
a/ Utiliser l'égalité
--> -->
AB = DC (Vecteurs ^^ )


b/ Utiliser l'égalité
--> --> -->
AC = AB + AD



Merci d'avance pour votre aide ...


Ensuite pour le 2ème exercice j'ai réussi tout sauf la dernière question :

f et g sont les fonctions définies sur [ -4 ; 4 ] par :
f(x) = ( 2 - x ) (x² + x - 7 ) et g(x) = 4 - x²


(Donc là il faut tracer les courbes f et g à l'écran d'une calculatrice )

et la question que je ne sais pas résoudre :

d) Résoudre graphiquement l'inéquation f(x) < ( signe : INFERIEUR OU EGAL ) g(x)

Merci d'avance . :happy2:


BONJOUR popo123..... ! Peut-être as-tu déjà dessiné ton repère et placé les points A, B, D .
Et dessiné le point C pour que ABCD soit un parallélogramme ! Tu auras une idée des coordonnées du point C à retrouver.
Un point de cours : les coordonnées d'un vecteur AB(flèche vecteur) sont ( xB - xA ; yB - yA ) où xA et yA sont les coordonnées du point A dans ce repère et xB et yB, les coordonnées du point B.

En appliquant l'égalité AB(flèche vecteur) = DC(flèchvect) tu vas pouvoir calculer les coordonnées de ces 2 vecteurs et enfin les égaler.

AB(flècvect) = (xB - xA ; yB - yA) Tu connais les valeurs de xA, xB, yA, yB ... A toi les calculs !
Pareil pour la suite .....
BON COURAGE ......

popo123456789
Messages: 6
Enregistré le: 16 Oct 2011, 18:00

par popo123456789 » 18 Jan 2012, 12:35

Merci de votre aide :)

J'ai réussis le premier exercice et j'ai trouvé 2 fois que C avait pour coordonné ( 3 ; 7 ) et c'est aussi ce que j'avais trouvé sur le repère que j'avais représenté avec les points ...

Par contre je n'ai toujours pas trouvé pour la dernière question du deuxieme exercice... :/

jeffb952
Membre Relatif
Messages: 232
Enregistré le: 05 Jan 2012, 11:26

par jeffb952 » 18 Jan 2012, 15:59

popo123456789 a écrit:Merci de votre aide :)

J'ai réussis le premier exercice et j'ai trouvé 2 fois que C avait pour coordonné ( 3 ; 7 ) et c'est aussi ce que j'avais trouvé sur le repère que j'avais représenté avec les points ...

Par contre je n'ai toujours pas trouvé pour la dernière question du deuxieme exercice... :/


Re BONJOUR ! Pardon pour cette réponse tardive !
Tu t'es débrouillé(e) parfaitement pour ce premier exercice !

Pour le second exercice, je pense que tu as dessiné les 2 représentations graphiques avec ta machine. Repère à l'oeil les coordonnées des points d'intersection entre les deux courbes.
Je vois un point d'intersection pour x= -3 , un autre autre pour x= 2 , et un dernier pour x= 3

Résoudre graphiquement f(x) <= g(x) revient à chercher les valeurs de x pour lesquelles "le dessin" de f(x) est situé en-dessous du "dessin" de g(x). Ici, c'est manifestement pour des x appartenant à l'intervalle [ ... ; ... ] . Pas le morceau entre x=2 et x= 3 (Ici, f(x) est devenu plus grand que g(x)! )
Un autre morceau de courbe f(x) convient : c'est pour les x compris entre 3 et 4 (puisqu'on s'arrête à 4 ) . Tu auras donc une réunion de 2 intervalles comme solution !

BONNE CONTINUATION !

popo123456789
Messages: 6
Enregistré le: 16 Oct 2011, 18:00

par popo123456789 » 18 Jan 2012, 16:14

jeffb952 a écrit:Re BONJOUR ! Pardon pour cette réponse tardive !
Tu t'es débrouillé(e) parfaitement pour ce premier exercice !

Pour le second exercice, je pense que tu as dessiné les 2 représentations graphiques avec ta machine. Repère à l'oeil les coordonnées des points d'intersection entre les deux courbes.
Je vois un point d'intersection pour x= -3 , un autre autre pour x= 2 , et un dernier pour x= 3

Résoudre graphiquement f(x) <= g(x) revient à chercher les valeurs de x pour lesquelles "le dessin" de f(x) est situé en-dessous du "dessin" de g(x). Ici, c'est manifestement pour des x appartenant à l'intervalle [ ... ; ... ] . Pas le morceau entre x=2 et x= 3 (Ici, f(x) est devenu plus grand que g(x)! )
Un autre morceau de courbe f(x) convient : c'est pour les x compris entre 3 et 4 (puisqu'on s'arrête à 4 ) . Tu auras donc une réunion de 2 intervalles comme solution !

BONNE CONTINUATION !



Encore merci :) je trouve que vous expliquez très bien !

Je pense avoir compris et donc f(x) <= g(x) sur l'intervalle [-3; 2] puis sur [ 3; +8(infini)[ ?

jeffb952
Membre Relatif
Messages: 232
Enregistré le: 05 Jan 2012, 11:26

par jeffb952 » 18 Jan 2012, 18:46

popo123456789 a écrit:Encore merci :) je trouve que vous expliquez très bien !

Je pense avoir compris et donc f(x) <= g(x) sur l'intervalle [-3; 2] puis sur [ 3; +8(infini)[ ?



Re Bonsoir ! Et re Pardon pour répondre si tard !
Tu as à peu près bien vu l'intervalle de réponse : [ -3 ; 2] U [ 3 ; 4] car on a défini les fonctions f et g sur l'intervalle [ -4 ; 4 ] donc ton deuxième morceau d'intervalle, s'arrête à 4 et non pas +infini !

BONNE SOIREE !

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 62 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite