Aide
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
par Souxodentine » 06 Nov 2019, 18:47
Bonjour j'ai besoin d'aide pour une question de mathématiques.a=(1+√5)/2 et b = (1-√5)/2 (E):x² = x +1
A l'aide de l'equation (E).verifier que pour tout nombre entier naturel n on a: a^n+2-b^n+2=a^n+1-b^n+1+a^n-b^n
Modifié en dernier par
Souxodentine le 06 Nov 2019, 19:08, modifié 1 fois.
-
titine
- Habitué(e)
- Messages: 5574
- Enregistré le: 01 Mai 2006, 13:59
-
par titine » 06 Nov 2019, 19:01
Souxodentine a écrit:Bonjour j'ai besoin d'aide pour une question de mathématiques.a=(1+√5)/2 et b = (1-√5)/2 (E):x² = x +1
A l'aide de l'equation (E).verifier que pour tout nombre entier naturel n on a: an+2-bn+2=an+1-bn+1+an-bn
Tu es sûr de ce que tu as écris ?
an+2-bn+2=an+1-bn+1+an-bn
peut s'écrire :
an-bn+4=2an-2bn+2
ou :
an-bn=2
Or an-bn=(1+√5)n/2 - (1-√5)n/2 = (n + √5 n - n + √5 n)/2 = √5 n
Je ne comprends pas ....
par Souxodentine » 06 Nov 2019, 19:09
J'avaisd mal formulé ma question
-
titine
- Habitué(e)
- Messages: 5574
- Enregistré le: 01 Mai 2006, 13:59
-
par titine » 06 Nov 2019, 19:20
a^n+2-b^n+2=a^n+1-b^n+1+a^n-b^n
C'est : a^n+2 ou a^(n+2) ?
a^n+1 ou a^(n+1) ?
-
titine
- Habitué(e)
- Messages: 5574
- Enregistré le: 01 Mai 2006, 13:59
-
par titine » 06 Nov 2019, 20:48
Je suppose que tu as vu que a et b sont solutions de. L'équation (E)
Donc on a : a^2 = a + 1 et b^2 = b + 1
Donc :
a^(n+2) - b^(n+2) = a^n × a^2 - b^n × b^2 = a^n (a + 1) - b^n (b + 1)
= a^(n+1) + a^n - b^(n+1) - b^n
As tu compris ?
par Souxodentine » 06 Nov 2019, 22:44
Merci je pense avoir compris.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 36 invités