Equation differentielle (approximation lineaire)
Forum d'archive d'entraide en physique et chimie
-
Anonyme
par Anonyme » 01 Mai 2005, 02:11
Bonjour
L'etude d'un circuit electrique permet la determination d'une equation
differentielle :R*P=tau*dx/dt+x(t)
Puis il est demander d'utiliser l'approximation lineaire des variation
de x autour de il est demandé de poser x(t)~ dans l'equation
differentielle
Mais là je sais pas quoi faire, remplacer trivialement x par rend
l'equation inutilisable
Si vous pouviez m'aider
Merci d'avance
-
Anonyme
par Anonyme » 01 Mai 2005, 02:12
bob1234_bob1234@hotmail.com a écrit :
> Bonjour
> L'etude d'un circuit electrique permet la determination d'une equation
> differentielle :R*P=tau*dx/dt+x(t)
> Puis il est demander d'utiliser l'approximation lineaire des variation
> de x autour de il est demandé de poser x(t)~ dans l'equation
> differentielle
> Mais là je sais pas quoi faire, remplacer trivialement x par rend
> l'equation inutilisable
> Si vous pouviez m'aider
> Merci d'avanceL'approximation linéaire de x(t) signifie que dx/dt est constante aux
alentours de x(t)=.
Il suffit donc de remplacer x(t) dans l'équation par pour trouver
cette constante : Cte = (R*P - )/tau
Tu obtient l'equation de x(t) aux alentours de : x(t)= Cte*t + Cte2
Tu trouve la deuxième constante pour t de la moyenne.
Si j'ai bien compris ta question, ça devrait fonctionner.
Matcheux
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 4 invités