Exo3 equations differentielles
Forum d'archive d'entraide mathématique
-
Anonyme
par Anonyme » 30 Avr 2005, 18:18
A business cycle model states that the rate of change of price ( a
function of time, t) depends on the accumulated total of all past
excess demand.
In addition, both demand and supply are linear functions of price.
The equations of the model may be written :
D( p(t) ) = d0 + d1 p(t) ( demand)
S( p(t) ) = s0 + s1 p(t) (supply)
p'(t) = a } de moins l'infini à t [ D (p(t) ) - S (p(t) ) ] dt
where a>0 , d10 are constants, as are d0 and s0.
1) By differentiating equation 3 with respect to t, and then using
equation 1 and 2, obtain a diffential equation for p(t).
2) Then find the general soltion of this equation
-
Anonyme
par Anonyme » 30 Avr 2005, 18:18
Yo666 wrote:
> de moins l'infini à
sorry, but these are the only words I could decipher in your post.
fr.education.entraide.maths is the perfect place to post if you can read
and write in french, so please avoid using alien langages in french
newsgroups. If you really can't write in french, try posting your
message in sci.math or any other suitable alien group, thanks.
--
B.R
-
Anonyme
par Anonyme » 30 Avr 2005, 18:18
Benoit Rivet a écrit :
> sorry, but these are the only words I could decipher in your post.
> fr.education.entraide.maths is the perfect place to post if you can read
> and write in french, so please avoid using alien langages in french
> newsgroups. If you really can't write in french, try posting your
> message in sci.math or any other suitable alien group, thanks.C'est vrai que c'est du foutage de gueule.

-
Anonyme
par Anonyme » 30 Avr 2005, 18:18
"Yo666" a écrit dans le message de news:
49ee0bb3.0502141533.47d300fe@posting.google.com...
>A business cycle model states that the rate of change of price ( a
> function of time, t) depends on the accumulated total of all past
> excess demand.
> In addition, both demand and supply are linear functions of price.
> The equations of the model may be written :
>
> D( p(t) ) = d0 + d1 p(t) ( demand)
> S( p(t) ) = s0 + s1 p(t) (supply)
>
> p'(t) = a } de moins l'infini à t [ D (p(t) ) - S (p(t) ) ] dtdonc :
p"(t) = a.(D(t) - S(t))
en remplaçant D et S par les expressions données :
p"(t) - a.(d1-s1).p(t) = a.(d0 - s0)
> where a>0 , d10 are constants, as are d0 and s0.
>
> 1) By differentiating equation 3 with respect to t, and then using
> equation 1 and 2, obtain a diffential equation for p(t).
>
> 2) Then find the general soltion of this equation
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 3 invités