Limite...

Olympiades mathématiques, énigmes et défis
bitonio
Membre Rationnel
Messages: 764
Enregistré le: 28 Mai 2006, 15:29

Limite...

par bitonio » 18 Nov 2006, 16:29

Bonjour,

voila un exo posé par notre prof de sup. Je le trouve assez interessant :)

calculer

Bonne chance!

Ciao



Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 18 Nov 2006, 17:13

Bonjour

Sans mettre la démo je trouve que la limite vaut ln(a) si b < a et vaut +oo si b > a

:happy3:

bitonio
Membre Rationnel
Messages: 764
Enregistré le: 28 Mai 2006, 15:29

par bitonio » 18 Nov 2006, 17:18

Raté :we: De toute facon comme le choix et a et b est arbitraire, ton raisonement ne peut pas tenir la route

Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 18 Nov 2006, 17:25

Oups, oubli d'un facteur.

Nouvelle réponse :

ln(a) si b < a et ln(a)+ln(b/a) si a < b

:happy3:

Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 18 Nov 2006, 17:32

Mon raisonnement.







Si b a ,
Finalement :


Finalement d'où f converge vers b

:happy3:

Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 18 Nov 2006, 17:32

Bon, modulo le LaTeX défaillant, on comprend

:happy3:

bitonio
Membre Rationnel
Messages: 764
Enregistré le: 28 Mai 2006, 15:29

par bitonio » 18 Nov 2006, 17:44

Oui c'est la bonne réponse! c'est en effet max(a,b)! bravo :) Cependant il y a beaucoup plus simple avec des DL ...

darkmaster
Membre Naturel
Messages: 74
Enregistré le: 18 Oct 2006, 22:40

par darkmaster » 03 Déc 2006, 02:27

j'ai une autre solution.
Si on a
donc et
Par suite,

darkmaster
Membre Naturel
Messages: 74
Enregistré le: 18 Oct 2006, 22:40

par darkmaster » 03 Déc 2006, 02:55

Et je crois que la limite de est plus difficile... :marteau:

steef91
Membre Naturel
Messages: 19
Enregistré le: 25 Jan 2007, 21:00

par steef91 » 19 Mai 2007, 15:20

darkmaster a écrit:Et je crois que la limite de est plus difficile... :marteau:


je serrai curieux de savoir à quoi c'est égal :)

fahr451
Membre Transcendant
Messages: 5142
Enregistré le: 05 Déc 2006, 23:50

par fahr451 » 19 Mai 2007, 15:25

steef91 a écrit:je serrai curieux de savoir à quoi c'est égal :)

on va dire 1 pour faire simple

 

Retourner vers ⚔ Défis et énigmes

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 12 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite