Enigme algebre

Olympiades mathématiques, énigmes et défis
Dodo777
Messages: 2
Enregistré le: 23 Juin 2007, 02:41

Enigme algebre

par Dodo777 » 23 Juin 2007, 02:47

Pouvez-vous m'aider? Je cherche un nombre de trois chiffres dont la somme des chiffres X par 39 = le nombre lui-meme????



cesar
Membre Rationnel
Messages: 841
Enregistré le: 05 Juin 2005, 07:12

par cesar » 23 Juin 2007, 08:09

si ton chiffre est abc, on a comme relation : a*100 + b*10 +c = 39x(a+b+c)

soit :

a(100-39) + b(10-39)-c.38 = 0
a.61 - b.29 -c.38 = 0 ou encore a.61 - b.29 = c.38
61 est premier, 29 idem, 38 = 2.19 et 19 est premier. et on a en plus
a different de 0, a dans {1,2,3,4,5,6,7,8,9}
b et c dans {0,1,2,3,4,5,6,7,8,9}

alben
Membre Irrationnel
Messages: 1144
Enregistré le: 18 Mai 2006, 21:33

par alben » 23 Juin 2007, 09:32

cesar a écrit:a.61 - b.29 -c.38 = 0

Bonjour,
A partir de là je transformerais en
90a-9c=(a+b+c).29=9.(10a-c) ce qui implique que 9 divise a+b+c qui est compris entre 0 et 27.
Si k=(a+b+c)/9, on n'a donc qu'a essayer k=0;1;2;3.
Par exemple avec k =2 on a 10a-c=58 et a+b+c=18 -> a=6;c=2;b=10 -> impossible
il ne reste de fait que deux solutions k=0 et k=1

bossedesmath
Messages: 1
Enregistré le: 23 Juin 2007, 21:17

par bossedesmath » 23 Juin 2007, 21:25

en continuant :
k = 0;1;2;3

k = 0 n'est pas possible

on sait que 39 ( a+b+c) <= 999
donc :
39 * 9 *k <= 999
k <= 2,8

donc k = 1 ou k = 2

comme déjà dit plus haut
k = 2 amène au triplet (a,b,c) = (6,10,2) donc impossible

k=1 amène la solution abc = 351

Dodo777
Messages: 2
Enregistré le: 23 Juin 2007, 02:41

par Dodo777 » 24 Juin 2007, 03:52

Donc, en voici une autre :
Le seul nombre de trois chiffres dont la somme des chiffres x par 41 = le nombre lui-meme?

 

Retourner vers ⚔ Défis et énigmes

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 19 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite