Math important

Réponses à toutes vos questions du CP à la 3ème
coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

Narration de recherche.

par coline62 » 04 Nov 2013, 17:46

Exercice 1 . A une réunion , 28 poignées de mains ont été échangées. Chaque personne a serré exactement une fois la min à chaque autre.

Combien de personnes se trouvaient à cette réunion ..

Pouvez vous m'aider s'il vous plait ?



coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

Narration de recherche.

par coline62 » 04 Nov 2013, 17:53

Exercice 2 : Un train de marchandise d'un kilomètre de long roule à une vitesse constnte de 20km/h .
Il entre dans un tunnel d'un kilomètre de long à 13heures.


A quelle heure l'arrière du train sort-il du tunnel ?

Pouvez-vous m'aider s'il vous plaît ?

joel76
Membre Relatif
Messages: 230
Enregistré le: 11 Fév 2013, 15:31

par joel76 » 04 Nov 2013, 17:54

2 personnes échangent une poignée de mains.
Si une troisième personne arrive, combien serrera-t-elle de mains ? Donc pour les 3 personnes cela fait combien de poignées de main.
Maintenant, comment trouver le résultat cherché ?

Avatar de l’utilisateur
WillyCagnes
Membre Transcendant
Messages: 3753
Enregistré le: 21 Sep 2013, 19:58

par WillyCagnes » 04 Nov 2013, 18:01

bonsoir,

soit n le nombre de personnes à la réunion
ils ont tous serré la main à (n-1) personnes (moins les doublons)2 fois

la formule= n(n-1)/2=28
je te laisse résoudre l'équation n²-n-56=0

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 18:02

joel76 a écrit:2 personnes échangent une poignée de mains.
Si une troisième personne arrive, combien serrera-t-elle de mains ? Donc pour les 3 personnes cela fait combien de poignées de main.
Maintenant, comment trouver le résultat cherché ?




Je n'ai pas compris ce que vous m'avez dit ? mais c'est pour 28 poignées de mains , donc c'est bien 28 personne ?

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 18:04

Je n'ai pas compris ce que vous m'avez dit ??

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 18:08

WillyCagnes a écrit:bonsoir,

soit n le nombre de personnes à la réunion
ils ont tous serré la main à (n-1) personnes (moins les doublons)2 fois

la formule= n(n-1)/2=28
je te laisse résoudre l'équation n²-n-56=0








Je n'ai pas compris ce que vous m'avez dit ? avec les n et les (n-1)

joel76
Membre Relatif
Messages: 230
Enregistré le: 11 Fév 2013, 15:31

par joel76 » 04 Nov 2013, 18:08

coline62 a écrit:Je n'ai pas compris ce que vous m'avez dit ??

2 personnes échangent une poignée de mains.
Avec 3 personnes on aura 3 poignées de mains (le troisième serre 2 mains)
Avec 4 on en aura 6. (le quatrième en sert 3).
Avec 5 ... le cinquième en serre ...
Avec 6 ...

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 18:18

joel76 a écrit:2 personnes échangent une poignée de mains.
Avec 3 personnes on aura 3 poignées de mains (le troisième serre 2 mains)
Avec 4 on en aura 6. (le quatrième en sert 3).
Avec 5 ... le cinquième en serre ...
Avec 6 ...





Donc avec le 5 eme on en serre 4 ? .
et avec le 6 eme on en serre 5 ?
Si j'ai bien compris ?

joel76
Membre Relatif
Messages: 230
Enregistré le: 11 Fév 2013, 15:31

par joel76 » 04 Nov 2013, 18:19

coline62 a écrit:Donc avec le 5 eme on en serre 4 ? .
et avec le 6 eme on en serre 5 ?
Si j'ai bien compris ?

Tu as essayé tes calculs ?

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 18:24

joel76 a écrit:Tu as essayé tes calculs ?




Oui , mais je ne comprends pas du tout comment faire..

joel76
Membre Relatif
Messages: 230
Enregistré le: 11 Fév 2013, 15:31

par joel76 » 04 Nov 2013, 18:25

coline62 a écrit:Oui , mais je ne comprends pas du tout comment faire..

???
Si tu as essayé, tu as du trouver !

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 18:33

joel76 a écrit:???
Si tu as essayé, tu as du trouver !






Non au contraire.. je ne trouve pas comment faire. :/

Avatar de l’utilisateur
WillyCagnes
Membre Transcendant
Messages: 3753
Enregistré le: 21 Sep 2013, 19:58

par WillyCagnes » 04 Nov 2013, 19:18

coline62 a écrit:Je n'ai pas compris ce que vous m'avez dit ? avec les n et les (n-1)


je t'ai répondue en privé, et maintenant tu as tout compris. :++:

coline62
Membre Naturel
Messages: 10
Enregistré le: 04 Nov 2013, 17:28

par coline62 » 04 Nov 2013, 19:25

WillyCagnes a écrit:je t'ai répondue en privé, et maintenant tu as tout compris. :++:




Je suis très contente de ton explication franchement , tu as étais d'une très grande aide.. Grâce a toi j'aurais une bonne note :++: Bye :) et encore merci beaucoup franchement :) :id:

Avatar de l’utilisateur
WillyCagnes
Membre Transcendant
Messages: 3753
Enregistré le: 21 Sep 2013, 19:58

par WillyCagnes » 05 Nov 2013, 13:13

coline62 a écrit:Je suis très contente de ton explication franchement , tu as été d'une très grande aide.. Grâce a toi j'aurai une bonne note :++: Bye :) et encore merci beaucoup franchement :) :id:


Miantenant, tu seras capable de compter le nombre de "bonjour" de tes camarades de classe en fonction du nombre d'élèves.

 

Retourner vers ✎ Collège et Primaire

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 18 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite