Devoir de Maths (Numérique et Géométrique)

Réponses à toutes vos questions du CP à la 3ème
la_plus_nul_en_maths
Membre Naturel
Messages: 55
Enregistré le: 13 Oct 2005, 20:20

Devoir de Maths (Numérique et Géométrique)

par la_plus_nul_en_maths » 17 Mai 2007, 14:19

Bonjour, j'ai un devoir de maths pour demain et il est très important pour moi.
Au cas vous ne pourrez pas le faire.
Essayez de voir si vous n'aurez pas la correction d'un annabrevet Maths 2005.
La partie la plus importante et la plus dur pour moi c'est la partie géométrique alors si vous pouvez faire celle là, mais ça ne veux en aucun cas dire que partie numérique ne m'est pas importante.
Vous pouvez piochez dans les deux parties aussi tant que c'est numéroté et compréhensible =)
Sinon j'ai pas vraiment besoin de messages qui me dise ce que je dois utiliser mais si vous voulez pourquoi pas, de toute les façons je fais aussi le devoir de mon coté, merci :).
Merci encore.

I - PARTIE NUMERIQUE

Exo 1 - Calculez A et donner le résultat sous la forme d'une fraction irréductible.
Ecrire B sous la forme aV5, où a est un entier relatif.

Soit A = 5 - 7 x 9
_ _ _
3 3 4

V = racine carré
Et B = V45- 12V5

Exo 2

A = (2x - 3)² - (4x + 7)(2x -3)

1) Développer et réduire A
2) Factoriser A
3) Résoudre l'équation (2x - 3)(-2x -10) = 0

Exo 3

Un pâtissier dispose de 411 framboises et de 685 fraises. Afin de préparer des tartelettes, il désire répartir ces fruits en les utilisant tous et en obtenant le maximum de tartelettes identiques.
1) Calculer le nombre de tartelettes.
2) Calculer le nombre de framboises et de fraises dans chaque tartelette.

Exo 4

Un élève de Cp fait des courses pour ses camarade et elle :
- La première fois, elle achète 5 crayons et 2 gommes pour 10,90 euros.
- La seconde fois, elle achète 8 crayons et 3 gommes pour 17,20 euros.
En utilisant le système d'équations, aider les élèves de CP à retrouver le prix de chaque article.

II - PARTIE GEOMETRIQUE
Monsieur Martin habite Petitville. Monsieur Gaspard habite à une distance de 900km de Petitville.
A huit heures du matin, les deux personnes commencent à rouler l'une vers l'autre :
-Monsieur Martin quitte Petitville et roule à 60km/h ;
-Monsieur Gaspard se dirige vers Petitville et roule à 90km.
On note x le temps écoulé depuis huit heures du matin, x = 0.
Après avoir roulé une heure, c'est-à-dire quand x = 1, Monsieur Martin est à 60km de Petitville et Monsieur Gaspard est, lui à 810 km de Petitville.

1) A quelle distance de Petitville Monsieur Martin se situe-t-il :
quand x = 4 ? quand x = 10 ?
2) A quelle distance de Peteitville Monsieur Gaspard se situe-t-il :
quand x = 4 ? quand x = 10 ?

3) Exprimer en fonction de x :
- La distance qui sépare Monsieur Martin de Petitville ;
- La distance qui sépare Monsieur Gaspard de Petit ville.


4) "--" désigne une flèche.
On donne les fonctions f: x-- 60x et g: x--900 -90
Complétez les tableaux suivant ;
___________________________________
x______ l___0___l___1__l___4__l___10_l
f(x)____ l_______l______l______l______l


___________________________________
x_______l___0___l___1__l___4__l___10_l
g(x)____ l_______l______l______l______l

Cette partie vous aurez besoin de papier millimétré, vous n'aurez donc pas que ça à faire, c'est pas grave je pose quand même l'exercice.

5) Représenter graphiquement les fonctions f et g sur une feuille de papier millimétré en prenant :
- En abscisse, 1 cm pour une durée d'heure ;
- En ordonnée, 1 cm pour une distance de 100km.

6)A l'aide d'une lecture graphique, déterminer :
a) la durée au bout de laquelle les deux personnes se croisent.
b) à quelle distance de Petitville se croisent ils ? Faire apparaître les pointillés nécéssaires.

7)a) Retrouvez le résultat de la question 6a) en résolvant une équation.
b) Retrouver le résultat de la question 6b) par le calcul.



chacha7611
Membre Relatif
Messages: 157
Enregistré le: 25 Sep 2005, 19:52

par chacha7611 » 17 Mai 2007, 15:40

Bonjour
Où bloques-tu ?? je veux bien t'aider t'expliquer mais par contre faire entier ton dm hors de question...
Donc c'est gentil de balancer ton dm comme ça mais sans question précise on peut pas t'aider
cordialement

la_plus_nul_en_maths
Membre Naturel
Messages: 55
Enregistré le: 13 Oct 2005, 20:20

par la_plus_nul_en_maths » 17 Mai 2007, 16:39

dacord bah expliquez moi la partie géométrique alors.
Je sais ça peut paraitre fou de balancer tout ça, mais vous n'êtes pas obligé de faire tout, c'est mon dernier dm et si j'ai pas une bonne note jsuis foutue :triste: . Bon ce que je peut faire aussi c'est de vous montrer mes réponses après alors.

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 17 Mai 2007, 22:55

bonjour,

formule magique v(km/h)=d(km)/t (h), donc d=v*t
on note ici le temps x
pour martin d=v*x=60*x
quand x=1, d=60
quand x=4, d=.....
quand x=10, d=....

pour gaspard
il parcourt d=v*x, mais la distance est calculée par rapport à petite ville
D=900-v*x
quand x=1, D=900-90*1=810
quand x=4, D=...
quand x=10, D=...

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 17 Mai 2007, 23:10

4) "--" désigne une flèche.
On donne les fonctions f: x-- 60x et g: x--900 -90x
Complétez les tableaux suivant ;
___________________________________
x______ l___0___l___1__l___4__l___10_l
f(x)____ l_______l______l______l______l

c'est facile avec les calculs précédents
___________________________________
x_______l___0___l___1__l___4__l___10_l
g(x)____ l_______l______l______l______l

la suite est graphique
pour tracer f(x), c'est une foction linéaire, sa représentation est une droite passant par l'origine, il suffit de déterminer un autre point (voir tableau plus haut)
pour tracer g(x), c'est une fonction affine, sa représentation est une droite ne passant pas par l'origine, il faut de déterminer deux points (voir tableau plus haut)

7)a) Retrouvez le résultat de la question 6a) en résolvant une équation.
tu as vu que les 2 droites se croisaient pour une certaines valeur de x
à ce moment f(x)=g(x)=d=D

b) Retrouver le résultat de la question 6b) par le calcul.
quand tu auras x, remplace dans f(x) ou g(x)

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 17 Mai 2007, 23:20

A = 5/3 - 7/3 x 9/4
1)quelle est l'opération prioritaire?, effectue la après avoir fait des simplifications
2)tu obtiens 2 fractions à soustraire qui n'ont pas le même dénominateur.Que faut-il faire?
3) si tu as fait les simplifications au 1), tu obtiens une fraction irréductble.

B = V45- 12V5
1) on ne peut additionner ou soustraire que des racines d'un même nombre
ex=2V5-4V5=-2V5
2)il faut faire apparaître des carrés sous les racines et utiliser Vx²=x
ex :V125=V(25*5)=V25*V5=5V5
2V125=2*5V5=10V5

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 17 Mai 2007, 23:38

note que je passerai moins de temps à faire les calculs directement, mais je tiens à ce que tu travailles par toi-même, le brevet n'est plus loin!!!

A = (2x - 3)² - (4x + 7)(2x -3)

1) développer et réduire
-priorité aux multiplications (2x-3)² et (4x+7)(2x-3)
-la première est une identité remarquable (a-b)²=a²-2ab+b²
-la seconde est une distributivité
(a+b)(c-d)=(a*c)+(b*c)+(a*-d)+(b*-d)=ac+bc-ad-bd
-attention développe (4x + 7)(2x -3) entre parenthèses car il y a un signe - devant l'expression
-fais une vérification:
calcule A = (2x - 3)² - (4x + 7)(2x -3) pour x=1
puis calcule l'expression développée et réduite pour x=1
tu dois trouver le même résultat aux 2, sinon reprends tes calculs.

2)factoriser A = (2x - 3)² - (4x + 7)(2x -3)
A= (2x - 3)(2x-3) - (4x + 7)(2x -3)
c'est trouver un terme commun
-ici le terme commun est (2x-3) en rouge
-tu le mets en avant
- tu ramasses le reste avec les parenthèses et les signes (en vert ) entre crochets
-tu réduis entre crochets et tu doit trouver la factorisation qui est donnée à la question suivante dans ton problème

3) pour résoudre une équation produit : (........)(.......)=0
si un produit de facteurs est nul, il faut et il suffit qu'un des facteurs soient nuls
(...)=0 ou (...)=0

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 17 Mai 2007, 23:43

exo 3 :
on veut préparer des tartelettes, il désire répartir ces fruits en les utilisant tous et en obtenant le maximum de tartelettes identiques.
soit x (le + grand possible) le nombre de tartelettes obtenues, le nombre de framboises (411) est un multiple de x, le nombre de fraises (685) est un multiple de x

x est donc le plus grand commun multiple de 411 et 685, soit le pgcd(411;685)

je te laisse le soin de le calculer

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 17 Mai 2007, 23:47

exo 4 :
soit x le prix d'un crayon et y le prix d'une gomme

prix de 5 crayons=5x
prix de 2 gommes=2y
montant total des achats=5x+2y=10.90

en faisant de même, tu écris une 2ème équation à 2 inconnues
tu résous le système et trouve x et y

voilà le travail est bien dégrossi, à toi de travailler
soumets tes réponses pour corrections éventuelles!!!!

la_plus_nul_en_maths
Membre Naturel
Messages: 55
Enregistré le: 13 Oct 2005, 20:20

par la_plus_nul_en_maths » 18 Mai 2007, 16:36

Merci BEAUCOUP j'ai oublié de vous remercier vous êtes adorable =)

 

Retourner vers ✎ Collège et Primaire

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 40 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite