Bloqué dans une équation
Réponses à toutes vos questions du CP à la 3ème
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 21 Juin 2012, 12:42
Salut à tous j'ai essayé de resoudre cette equation 1er degre mais il me semble que c'est du 2éme degré, puisqu'en développant le terme gauche on a

x(x+6)+1/6=5/6)
j'arrive jusque la et je bloque
)
-
mouette 22
- Habitué(e)
- Messages: 2827
- Enregistré le: 06 Fév 2008, 11:38
-
par mouette 22 » 21 Juin 2012, 15:50
MATH&ME a écrit:Salut à tous j'ai essayé de resoudre cette equation 1er degre mais il me semble que c'est du 2éme degré, puisqu'en développant le terme gauche on a

+1/6=5/6)
j'arrive jusque la et je bloque
)
tu ne dois pas avoir x+6 au dénominateur
peux tu écrire tout ton travail ?
ce n'est pas une équation du premier degré en effet
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 21 Juin 2012, 16:46
-
Lostounet
- Membre Légendaire
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 21 Juin 2012, 17:39
MATH&ME a écrit:Salut à tous j'ai essayé de resoudre cette equation 1er degre mais il me semble que c'est du 2éme degré, puisqu'en développant le terme gauche on a

+1/6=5/6)
j'arrive jusque la et je bloque
)
Yo salut,
Vu ton travail, je pense que l'équation à résoudre est la suivante:
} + \frac{1}{6} = \frac{5}{6})
Est-ce le cas?
Ce n'est pas une équation du premier degré, mais on peut jouer avec pour trouver des solutions avec des outils "collège"...
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 21 Juin 2012, 17:43
Merci loustounet ,mais l'équation est
x(x+6)+1/6=5/6)
.
Reste à voir quel sont les outils college à utiliser ??
ne serais pas par hazard des identités remarquables ????
-
Lostounet
- Membre Légendaire
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 21 Juin 2012, 18:39
MATH&ME a écrit:Merci loustounet ,mais l'équation est
x(x+6)+1/6=5/6)
.
Reste à voir quel sont les outils college à utiliser ??
ne serais pas par hazard des identités remarquables ????
Bien entendu,
Tu multiplies le tout par 6:
4x(x + 6) + 1 = 5
Qui se ramène à:

On peut l'écrire sous la forme suivante, en ajoutant 6^2 et en retranchant 6^2:
^2 + 2\time (2x) \time (6) + (6)^2 - 6^2 - 4 = 0)
Ensuite? :we:
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 21 Juin 2012, 18:51
Lostounet a écrit:Bien entendu,
Tu multiplies le tout par 6:
4x(x + 6) + 1 = 5
Qui se ramène à:

On peut l'écrire sous la forme suivante, en ajoutant 6^2 et en retranchant 6^2:
^2 + 2\time (2x) \time (6) + (6)^2 - 6^2 - 4 = 0)
Ensuite? :we:
E bein ca se resume à :
^2-6^2-2^2=0)
-
Lostounet
- Membre Légendaire
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 21 Juin 2012, 18:59
MATH&ME a écrit:E bein ca se resume à :
^2-6^2-2^2=0)
Exactement !
Soit:
^2 - \sqrt{40}^2=0)
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 21 Juin 2012, 19:18
comment t'a transformé

vers le rationnel. ???
-
Lostounet
- Membre Légendaire
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 21 Juin 2012, 19:44
MATH&ME a écrit:comment t'a transformé

vers le rationnel. ???
Bah


Et donc l'équation devient (2x + 6)^2 - 40...
En pour faire apparaître un a^2 - b^2, on met sous cette forme

Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 21 Juin 2012, 19:52
Lostounet a écrit:Bah


Et donc l'équation devient (2x + 6)^2 - 40...
En pour faire apparaître un a^2 - b^2, on met sous cette forme

Merci , je vais eesayer de resoudre ca .
-
Black Jack
par Black Jack » 22 Juin 2012, 18:27
On peut simplifier un peu ...
En arrivant à : 4x² + 24x - 4 = 0 , on peut commencer par diviser les 2 membres par 4 et traiter alors :
x² + 6x - 1 = 0
(x + 3)² - 9 - 1 = 0
...
:zen:
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 23 Juin 2012, 23:36
Black Jack a écrit:On peut simplifier un peu ...
En arrivant à : 4x² + 24x - 4 = 0 , on peut commencer par diviser les 2 membres par 4 et traiter alors :
x² + 6x - 1 = 0
(x + 3)² - 9 - 1 = 0
...
:zen:
Je ne sais pas resoudre des equations de 2éme degré , mais ca serait benefique de le savoir , comment proceder BLACKJACK ?????
-
mouette 22
- Habitué(e)
- Messages: 2827
- Enregistré le: 06 Fév 2008, 11:38
-
par mouette 22 » 24 Juin 2012, 08:24
MATH&ME a écrit:Je ne sais pas resoudre des equations de 2éme degré , mais ca serait benefique de le savoir , comment proceder BLACKJACK ?????
Salam! Si vraiment tu veux t'y mettre va sur Wikipedia ""équation du second degré "Je pense qu 'avec ta volonté tu vas y arriver !
cependant ici Blackjack écrit
A²-B² :lol3: ce qui fait que tu peux résoudre cette équation sans passer par "ax²+bx+c"
-
Black Jack
par Black Jack » 24 Juin 2012, 10:36
MATH&ME a écrit:Je ne sais pas resoudre des equations de 2éme degré , mais ca serait benefique de le savoir , comment proceder BLACKJACK ?????
Dans le cas présent, c'est immédiat
(x + 3)² - 9 - 1 = 0
(x + 3)² = 10
x+3 = +/- V10 (avec V pour racine carrée).
x = -3 +/- V10
S:{-3-V10 ; -3+V10}
******
Ou bien autrement :
(x + 3)² - 9 - 1 = 0
(x + 3)² - 10 = 0
(x + 3)² - (V10)² = 0
et on se rappelle que a²-b² = (a-b)(a+b)
avec ici : a = x+3 et b = V10
...
:zen:
-
MATH&ME
- Membre Relatif
- Messages: 340
- Enregistré le: 29 Nov 2011, 18:59
-
par MATH&ME » 24 Juin 2012, 12:37
Merci je vais m'y mettre .
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 25 invités