Lieu Géométrique, HELP !!
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 16:23
Disons que c'est l'objectif de l'exercice, faut le prouver en fait :lol5:
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 16:24
Désolée de ne pas te l'avoir dis
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 16:28
Désolé de ne pas t'avoir dit que Pour le 3. le livre dit :
Si on note, par exemple, x1 l'abscisse de M et x2 celle de N, on sait trouver, en fonction de x1 et x2 les coordonnées (xi;yi) du point I milieu de [MN]il est alors inutiles de calculer x1 et x2.
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 16:51
J'ai oublié une question:
4.a)Prouvez que I appartient à la parbole C d'équation y= 2x²+1.
b)Réciproquement, il reste désormais à répondre à la question suivante: "Le point I décrit-il toute la courbe C ?"
Lorsque m décrit R, prouvez que xi décrit R et déduisez-en que I décrit toute la courbe C.
5.Rédigez une solution. :hum:
-
Huppasacee
- Membre Complexe
- Messages: 2635
- Enregistré le: 22 Jan 2008, 23:05
-
par Huppasacee » 23 Oct 2008, 16:55
Le milieu I de 2 points A et B a pour abscisse
(xA + xB)/2 = xI
pour l'ordonnée
Comme A et B sont sur la droite d, leur milieu aussi
donc ses coordonnées vérifient l'équation de la droite
donc yI = m xI + 1
-
Huppasacee
- Membre Complexe
- Messages: 2635
- Enregistré le: 22 Jan 2008, 23:05
-
par Huppasacee » 23 Oct 2008, 16:58
Lorsque x1 et x2 sont les solutions de
ax² + bx + c = 0
alors leur somme
x1 + x2
est égale à -b/a
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 17:01
OK g compris ^^, Et comment on trouve les coordonnées du point I ? je peux pas écrire ((xA+xB)/2 ; m xi+1) :hein:
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 17:03
:hein2: je comprends pas pk tu dis que que x1 + x2 est égale a -b/a
-
ManoOon
- Membre Naturel
- Messages: 36
- Enregistré le: 23 Oct 2008, 09:24
-
par ManoOon » 23 Oct 2008, 17:06
Je suis désolée Huppasacee, mais je dois y aller, mais tu peux toujours répondre à la question 4) si tu y arrive , merci pour tout, à tout à l'heure peut-être
Mercii encore ^^
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 35 invités