Developpement
Réponses à toutes vos questions du CP à la 3ème
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:12
bonjour,est-ce-que quelqu'un peut m'aider à developper et à réduire ces expressions?merci à tous ceux qui voudront bien m'aider.
1) (x+y)² -(x-y)²
2)(x-y)(x²-y²)(x+y)
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Aoû 2005, 11:14
Bonjour
Tu ne connais pas tes identités remarquables ?
:hein:
Jord
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:20
euh.. (x+y)²= x²+2xy+y²?oui mais c'est apres que jai un peu de mal en fait...pour reduire je sais pas trop.
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Aoû 2005, 11:25
1 patate moins 1 patate = ? 0 patates ...
Eh bien là c'est pareil : x²-x²=0 , 2xy+2xy=4xy
A toi de jouer
:happy3:
Jord
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:31
(x+y)²-(x-y)²
x²+2xy+y²-x²-2xy+y², c'est ça nightmare?
2xy-2xy+x²-x²+y²+y² ?
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Aoû 2005, 11:36
Quel est le développement de (x-y)² ?
-
S@m
- Membre Irrationnel
- Messages: 1107
- Enregistré le: 18 Juin 2005, 18:42
-
par S@m » 31 Aoû 2005, 11:37
Non il faut que tu fasse attention au signe.
Ca te donne donc (x+y)²-(x-y)²= x²+2xy+y²-(x²-2xy+y²)
Après la question est de savoir comment les signes doivent etre changés.
je te laisse conclure grace aux indications de Nightmare concernant les patates :zen: . Cordialement,
S@m.
Edit: Je suis d'accord avec toi Nightmare il vaut mieux qu'il toruve tout seul, j'ai donc enlever une etape de mon post :marteau:
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:38
(x-y)²
x²-2xy+y²?
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Aoû 2005, 11:39
Oui , donc quel est le développement de -(x-y)² ? (Sam a donné la réponse mais essaye de la trouver tout seul)
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:44
a ok merci Sam ^^
(x+y)²-(x-y)²
x²+2xy+y²-(x²-2xy+y²)
x²+2xy+y²-x²+2xy-y²
2xy+2xy+x²-x²+y²-y²
4xy?
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Aoû 2005, 11:46
Exactement :lol3:
Tu vois ce n'était pas si laborieux :zen:
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:48
-(x-y)²
-(x²-2xy+y²)
-x²+2xy -y²?
-
S@m
- Membre Irrationnel
- Messages: 1107
- Enregistré le: 18 Juin 2005, 18:42
-
par S@m » 31 Aoû 2005, 11:51
Oui c'est bien ça, et ton mauvais placement des signes dans ta premiere réponse est la cause de ton erreur. Il faut toujours y faire attention :happy2:
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:52
ah d'accord merci et euh pour la b tu peux m'eclaircir?silteplait ^^"
-
S@m
- Membre Irrationnel
- Messages: 1107
- Enregistré le: 18 Juin 2005, 18:42
-
par S@m » 31 Aoû 2005, 11:54
Cela a encore a voir avec les identitiés remarquables.
a²-b² ca ne te rappelle rien? Si oui essaye de t'aider de ça...
-
Anonyme
par Anonyme » 31 Aoû 2005, 11:59
(a+b)(a-b)
a²-b²?oui ça je sais
-
Anonyme
par Anonyme » 31 Aoû 2005, 12:54
silvousplait,personne ne peux m'aider?
-
Nicolas_75
- Membre Rationnel
- Messages: 919
- Enregistré le: 29 Aoû 2005, 11:42
-
par Nicolas_75 » 31 Aoû 2005, 12:55
... eh ben, applique cette formule, pour réduire :
(x-y)(x²-y²)(x+y) = (x²-y²)(x-y)(x+y) = (x²-y²)(x²-y²) = (x²-y²)²
Nicolas
-
Anonyme
par Anonyme » 31 Aoû 2005, 13:10
ah d'accord merci
(x²-y²)²
(x²)²-2x²*y²+(y²)²??je suis désolé je suis pas très doué mais en fait je passe en 3eme et j'avais commencé à voir le programme donc c'est pour ça que j'ai un peu de mal...
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Aoû 2005, 14:05
Oui c'est bien ça, mais tu peux simplifier (x²)²
:happy3:
Jord
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 45 invités