Annuités à interets composés

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
cplp2
Messages: 3
Enregistré le: 11 Oct 2005, 20:11

annuités à interets composés

par cplp2 » 11 Oct 2005, 20:17

Une personne emprunte 100000 Frs à un taux annuel de 16.20 % et s'engage à rembourser sa dette en 15 versements annuels de 18104 Frs, le 1er remboursement ayant lieu un an après la signature du contrat et la remise de fonds.
Verifier que le tx annuel est bien de 16.20 %
Les taux d'interets ayant baissé, cette personne renegocie le contrat avec son créancier, qui accepte de remplacer les neuf dernières annuités par huit semestralités constantes, calculées au tx semestriel de 6 %n qur le montant de la dette restant à payer immédiatement après le versement de la 6ème annuité
Calculer le montant de la dette après le paiement de la sixième annuité.
Calculer le montant de chacune des semestralités.

J'espère que vous pourrez m'aider, je vous en remercie.
Laurent.



Chimerade
Membre Irrationnel
Messages: 1472
Enregistré le: 04 Juil 2005, 15:56

par Chimerade » 12 Oct 2005, 12:33

cplp2 a écrit:Une personne emprunte 100000 Frs à un taux annuel de 16.20 % et s'engage à rembourser sa dette en 15 versements annuels de 18104 Frs, le 1er remboursement ayant lieu un an après la signature du contrat et la remise de fonds.
Verifier que le tx annuel est bien de 16.20 %
Les taux d'interets ayant baissé, cette personne renegocie le contrat avec son créancier, qui accepte de remplacer les neuf dernières annuités par huit semestralités constantes, calculées au tx semestriel de 6 %n qur le montant de la dette restant à payer immédiatement après le versement de la 6ème annuité
Calculer le montant de la dette après le paiement de la sixième annuité.
Calculer le montant de chacune des semestralités.

J'espère que vous pourrez m'aider, je vous en remercie.
Laurent.


ou


Avec C=100000, t=0.162 n=15 on trouve :
... francs
Pendant six ans, cette personne a payé une annuité de 18104 francs pour rembourser une somme S au taux de 16,2%.

francs

Tout se passe comme si la personne avait contracté deux prêts simultanément : l'un de S=66356,55 francs à rembourser en 6 ans au taux de 16,2% et par conséquent avec une annuité de 18104 francs, et un deuxième prêt d'un montant S'=C-S=100000-66356,55=33643,45, pour lequel aucun remboursement et aucun versement d'intérêt ne serait intervenu. La somme due à ce moment est donc :

francs

On peut donc faire le calcul sur la somme due à la fin de la sixième année par le calcul standard :



avec cette fois C'=82820,39 t'=0,06 et n'=8

francs

La nouvelle semestrialité constante est donc : 13337.06 francs

On peut d'ailleurs vérifier cette approche, qui peut sembler originale à ceux qui ne sont pas actuaires, en supposant que la négociation échoue et que l'on refait le calcul avec le même taux d'intérêt 16,2% sur neuf ans.

francs

La différence avec le calcul de la première annuité n'est due qu'aux arrondis effectués !

Les calculs ne tombant jamais juste, on est amené à arrondir et selon la manière d'arrondir, on peut avoir de petites variations. La somme à payer initialement prévue était de 18104 francs alors qu'en toute rigueur, elle aurait dû être 18104,08 francs, ce qui montre que le banquier, grand seigneur, n'est pas à quelques centimes près...

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 51 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite