7 résultats trouvés
Revenir à la recherche avancée
Bonsoir, toujours sur mes annales et je fais face à une nouvelle difficulté, j'arrive vraiment pas a trouver la solution ! Un petit éclaircissement les gens ? :happy2: On considère la fonction g définie sur ]0; +infini[ par: g(x)=ln(1+(1+x)^1/2)-ln(x^1/2) Pour ;) réel strictement positif fixé, l'équ...
- par Nicopilot29
- 24 Mar 2013, 20:19
-
- Forum: ✯✎ Supérieur
- Sujet: g(x)=λ
- Réponses: 1
- Vues: 307
Décidement, je galère avec h' !! Voilà l'énoncé: La fonction h' a) est de signe constant sur l'intervalle J b) s'annule au point x=e^ - 3e^4 c) s'annule au point x=e^-1 d) s'annule au point x=e^3/4 Je vois pas comment arriver à tels résultat, je trouve tout le temps x=4/3, je vois pas comment les ex...
- par Nicopilot29
- 22 Mar 2013, 19:20
-
- Forum: ✯✎ Supérieur
- Sujet: Dérivée QCM
- Réponses: 7
- Vues: 557
DamX a écrit:Bonjour,
La b) est la bonne.
Déjà on simplifie h :
h(x) = 2 (ln x)^2 - 3 ln(x) - 2
Puis on a directement h'(x) = 4 (ln x)/x -3/x
Damien
Merci beaucoup pour ta réponse ! mais je comprends pas pour le 4(lnx/x), comment on y arrive ?
- par Nicopilot29
- 22 Mar 2013, 16:05
-
- Forum: ✯✎ Supérieur
- Sujet: Dérivée QCM
- Réponses: 7
- Vues: 557
Bonjour, en pleine préparation d'examens de maths écris pour une prépa intégré pilote, je m'inscris ici pour recevoir l'aide nécessaire quand je galère quelques fois ! :)
See ya :)
Nicopilot29
- par Nicopilot29
- 22 Mar 2013, 15:20
-
- Forum: ✌ Présentez-vous
- Sujet: Nicopilot29
- Réponses: 2
- Vues: 385
Bonjour à tous ! voilà je bosse sur les annales du concours de la DGAC et il y a une question qui me turlupine. La voici: Soit h(x)= 2(lnx)²+ln(1/x^3)-2 Pour tout x réel strictement positif, la fonction dérivée h' de la fonction h est définie par: a) h'(x)=2ln(x)-3 b) h'(x)=4{(lnx)/x}-(3/x) c) h'(x)...
- par Nicopilot29
- 22 Mar 2013, 15:18
-
- Forum: ✯✎ Supérieur
- Sujet: Dérivée QCM
- Réponses: 7
- Vues: 557