9 résultats trouvés
Revenir à la recherche avancée
A part une droite passant par l'origine je vois vraiment pas ce que ca peut être :x
- par Tikoko
- 20 Oct 2010, 13:46
-
- Forum: ✎✎ Lycée
- Sujet: Nombres complexes
- Réponses: 16
- Vues: 505
Rholala je dois être sacrément abrutis aujourd'hui, je vois pas du tout pourtant je sens que c'est logique ... honte à moi :briques:
- par Tikoko
- 19 Oct 2010, 20:36
-
- Forum: ✎✎ Lycée
- Sujet: Nombres complexes
- Réponses: 16
- Vues: 505
Ah oui merci ! Donc je continue :
-x-iy+i(x-iy) = 0 <=> -x-iy+ix+y = 0 <=> y-x+i(x-y) = 0
Donc Re(z) = y-x et Im(z) = x-y ?
Mmh je doute, car je ne vois pas comment exploiter ces résultats :/
- par Tikoko
- 19 Oct 2010, 20:13
-
- Forum: ✎✎ Lycée
- Sujet: Nombres complexes
- Réponses: 16
- Vues: 505
1) D'accord, donc je trouve :
f(z) = z (z+i
z)/2 = z (z+i
z-2z)/2 = 0 -z+i
z = 0
Mais la je bloque

2)b) J'ai trouvé l'erreur, et j'ai refais mon calcul j'arrive alors à Im(z) = 1/(
z-z) et après le raisonnement est le même.
- par Tikoko
- 19 Oct 2010, 19:58
-
- Forum: ✎✎ Lycée
- Sujet: Nombres complexes
- Réponses: 16
- Vues: 505
1) Heu ... désolé mais j'ai pas compris la question
2)b) Pourriez-vous me dire qu'est-ce qui est faux que je me corrige ? :)
- par Tikoko
- 19 Oct 2010, 19:31
-
- Forum: ✎✎ Lycée
- Sujet: Nombres complexes
- Réponses: 16
- Vues: 505
Bonjour/Bonsoir, J'ai un petit exercice à faire et je bloque complétement dessus : (O;u;v) est un repère orthogonal du plan complexe. F est l'application du plan complexe dans lui-même qui au point M d'affixe z associe le point M' d'affixe f(z) = (z/2)+(i[barre]z[/barre]/2) 1) Montrer que l'ensemble...
- par Tikoko
- 19 Oct 2010, 19:20
-
- Forum: ✎✎ Lycée
- Sujet: Nombres complexes
- Réponses: 16
- Vues: 505