4 résultats trouvés
Revenir à la recherche avancée
j'ai finalement réussi a m'en sortir en faisant un système a 2 inconnues avec f'(x) = a -(c/(x-1)²) comme f'(3)=0 et f'(2) = 3 on a 2 équation : a -(c/(3-1)²) = 0 et a -(c/(2-1)²) = 3 on trouve donc a =-1 et c = -4 f(3) = ax +b + c / x-1 = 2 -3 +b -4/2 =2 b = 3 + 2 + 2 = 7 voila merci pour vos indic...
- par saphirz
- 10 Jan 2010, 16:57
-
- Forum: ✎✎ Lycée
- Sujet: fonction dérivée 1er S
- Réponses: 5
- Vues: 1182
j'ai trouvé comme dérivée :
f(x)= a +b +c/(x+1)
f'(x) = a*1 + 0 + ( 0*(x+1) - c* 1
f'(x) = a+ -( c/ (x+1)²)
ensuite
"et possède au point d'abscisse 2 une tangente parallèle à la droite d'équation y = 3x+2"
donc f'(2) = 3
mais arrivée à la je suis perdu ...
- par saphirz
- 10 Jan 2010, 15:33
-
- Forum: ✎✎ Lycée
- Sujet: fonction dérivée 1er S
- Réponses: 5
- Vues: 1182
j'avouerai que j'ai oublier de mentionner ce que j'avais déjà fais... et t'ai réponse sont intéressante mais j'ai déjà pensé à ça et sa ne m'avance pas plus :/
- par saphirz
- 10 Jan 2010, 14:21
-
- Forum: ✎✎ Lycée
- Sujet: fonction dérivée 1er S
- Réponses: 5
- Vues: 1182
bonjours à tous. J'ai un certain exercice me laissant un petit rictus continue à chaque fois que je le lis. Déterminer trois réels a, b, c tels que la courbe d'équation y= ax + b + c/(x-1) passe par A(3 ; 2) , admette en ce point une tangente horizontale et possède au point d'abscisse 2 une tangente...
- par saphirz
- 10 Jan 2010, 12:26
-
- Forum: ✎✎ Lycée
- Sujet: fonction dérivée 1er S
- Réponses: 5
- Vues: 1182