4 résultats trouvés
Revenir à la recherche avancée
Comme le PGCD est une constante, il n'y a pas de racines multiples.
En revanche, je dois être trèèèès bête, mais je comprends pas le rapport avec le fait que Phi 12 divise $X^{p^m-1}-1$..
- par shawnjohnson
- 13 Oct 2008, 20:54
-
- Forum: ✯✎ Supérieur
- Sujet: Corps
- Réponses: 12
- Vues: 1161
Merci^^
Mais c'est surtout pour la question (5), j'ai bien compris que $X^{p^m-1}-1 est divisible par X^{12}-1 donc par Phi(12)(X), mais je n'arrive pas à comprendre pourquoi il y a 4 racines distinctes ...
- par shawnjohnson
- 12 Oct 2008, 19:14
-
- Forum: ✯✎ Supérieur
- Sujet: Corps
- Réponses: 12
- Vues: 1161
Merci beaucoup pour vos réponses, mais j'avoue que je n'arrive toujours pas à comprendre pourquoi il a 4 racines distinctes .
- par shawnjohnson
- 12 Oct 2008, 13:25
-
- Forum: ✯✎ Supérieur
- Sujet: Corps
- Réponses: 12
- Vues: 1161
Bonjour à tous, J'ai un problème avec un exercice sur les corps finis. Pouvez-vous m'aider? 1) Calculer phi(12) (indicatrice d'Euler) J'ai trouvé phi(12) = 4 2) Calculer Phi 12 (X) J'ai trouvé X^4-X²+1 3) Déterminer la décomposition en facteurs irréductibles de Phi 12 (X) dans F2[X] et F3[X] (Fn[x] ...
- par shawnjohnson
- 08 Oct 2008, 15:15
-
- Forum: ✯✎ Supérieur
- Sujet: Corps
- Réponses: 12
- Vues: 1161