19 résultats trouvés

Revenir à la recherche avancée


ok bon bah merci alors !!
par mathsgirlz
25 Oct 2009, 15:45
 
Forum: ✎✎ Lycée
Sujet: Inequations avec parametres
Réponses: 11
Vues: 1055

ça me parait trop simple pour etre fini non ?? ( mais si c'est fini tant mieux hein ^^ )
par mathsgirlz
25 Oct 2009, 15:24
 
Forum: ✎✎ Lycée
Sujet: Inequations avec parametres
Réponses: 11
Vues: 1055

donc pour pour celle que j'avais ecrit juste avant je trouve si x=2-3m alors x+3m-2=0 si x>2-3m alors x+3m-2>0 si x0 alors m>3/5 et on a 2 racines *x1=-5/3 *x2=-1/m mais j'ai le meme probleme que precedemment pour faire mon tableau de signe troisieme et derniere : \frac{m+3}{x}=\frac{2m-1}{x-1} je p...
par mathsgirlz
25 Oct 2009, 13:56
 
Forum: ✎✎ Lycée
Sujet: Inequations avec parametres
Réponses: 11
Vues: 1055

ok super je vais mes equations je posterai mes reponses savoir si c'est juste merci beaucoup !!
par mathsgirlz
25 Oct 2009, 13:35
 
Forum: ✎✎ Lycée
Sujet: Inequations avec parametres
Réponses: 11
Vues: 1055

j'aurai dit que x+3m-2 est positif si x>3m-2
j'aurai aussi dit que x+3m-2 est nul si x=3m-2
c'est ça ??
par mathsgirlz
25 Oct 2009, 13:31
 
Forum: ✎✎ Lycée
Sujet: Inequations avec parametres
Réponses: 11
Vues: 1055

Inequations avec parametres

Bonjour est ce que quelqu'un pourrait m'expliquer comment resoudre une inequation ou equation, avec parametres ?? par exemple j'ai : \frac{m}{x-2}>\frac{m-1}{x+1} je passe tout du meme cote je simplifie j'obtiens \frac{x+3m-2}{(x-2)(x+1)}>0 ensuite il faut faire un tableau de signe j...
par mathsgirlz
25 Oct 2009, 13:20
 
Forum: ✎✎ Lycée
Sujet: Inequations avec parametres
Réponses: 11
Vues: 1055

ok merci je vais essayer
par mathsgirlz
17 Oct 2009, 18:39
 
Forum: ✎✎ Lycée
Sujet: inequations exponentielles
Réponses: 2
Vues: 694

inequations exponentielles

bonjour, je bloque sur 3 inequations ... (ex-1)/(ex-e²<1/e² j'avais passer le 1/e² de l'autre cote pour tout mettre au meme denominateur mais je ne peux pas mettre au meme denominateur ex-1(ex+1-ex-e+1) deja il faut que je trouve mon ensemble de definition mais je n'arrive pas a resoudre l'inequatio...
par mathsgirlz
17 Oct 2009, 17:49
 
Forum: ✎✎ Lycée
Sujet: inequations exponentielles
Réponses: 2
Vues: 694

d'accord merci ! pouvez vous me dire si ce que j'ai fait est correct ??
somme (ak+b) pour k de 0 à n = [(n+1)(an+2b)]/2

somme (-2p+1) pour p de1 à n = 2n[(n-1)+1]/2

somme (6p-1) pour p de 0 à n = 1[(n+1)(3n)]/2

merci d'avance !
par mathsgirlz
21 Sep 2008, 09:34
 
Forum: ✎✎ Lycée
Sujet: sigma
Réponses: 5
Vues: 4157

sigma

bonsoir !
quelqu'un s'y connaitrait il en notation sigma ??
par mathsgirlz
20 Sep 2008, 19:56
 
Forum: ✎✎ Lycée
Sujet: sigma
Réponses: 5
Vues: 4157

ok merci ^^
par mathsgirlz
20 Sep 2008, 19:54
 
Forum: ✎✎ Lycée
Sujet: Suites
Réponses: 6
Vues: 438

ah oui oui d'accord je comprends mieux maintenant et donc quand on me donne des expressions du type U(n+1)=..Un c'est toujours la meme methode pour obtenir Un ??
par mathsgirlz
20 Sep 2008, 18:19
 
Forum: ✎✎ Lycée
Sujet: Suites
Réponses: 6
Vues: 438

oui là je pense que ça va aller mieux je vais m'y mettre tout de suite merci beaucoup !
juste une question pouvez vous m'expliquez comment vous avez fait pour obtenir cette ecriture ??
par mathsgirlz
20 Sep 2008, 18:05
 
Forum: ✎✎ Lycée
Sujet: Suites
Réponses: 6
Vues: 438

Suites

Bonjour à tous ! On considere la suite numerique (Un) definie par : U0=-1 et, n , U(n+1)=[3+2Un]/[2+Un] 1- calculer les 4 premiers termes de la suite ==> je l'ai fait 2-démontrer que (Un) est un nombre positif pour tout entier n non nul; en deduire que (Un) est definie quel que soit l'entier n ==> j...
par mathsgirlz
20 Sep 2008, 16:54
 
Forum: ✎✎ Lycée
Sujet: Suites
Réponses: 6
Vues: 438

euh pardon je me suis trompee c sin²Y et non sin²X
par mathsgirlz
06 Mai 2008, 18:48
 
Forum: ✎✎ Lycée
Sujet: Trigo
Réponses: 7
Vues: 1070

merci d'avoir repondu !!
alors voila ce que j'avais fait ..
en developpant et en simplifiant jobtiens :
1 + cos²X + sin²X+ 2(cosX+sinY) + 2 cosXsinY
mis alors apres je ne vois pa quelle(s) formule(s) utiliser :s
par mathsgirlz
06 Mai 2008, 18:13
 
Forum: ✎✎ Lycée
Sujet: Trigo
Réponses: 7
Vues: 1070

personne doué en trigo ??
par mathsgirlz
06 Mai 2008, 17:40
 
Forum: ✎✎ Lycée
Sujet: Trigo
Réponses: 7
Vues: 1070

s'il vous plait un ti coup de main
par mathsgirlz
06 Mai 2008, 17:13
 
Forum: ✎✎ Lycée
Sujet: Trigo
Réponses: 7
Vues: 1070

Trigo

bonjour à tous voila j'ai 3 exos de trigo et je bloque !! exo 1 prouver les egalites suivantes ou x et y sont des reels quelconques 1) ( 1+cosX+sinY)²= 2(1+cosX)(1+sinY) 2) ( cosX+sinX)² = 1 + 2 sin(2X) 3) cos(X+Y)cos(X-Y)=cos²X-sin²Y pour la 1) apres avoir developper je suis bloquee à : 1+ cos²X+si...
par mathsgirlz
06 Mai 2008, 16:45
 
Forum: ✎✎ Lycée
Sujet: Trigo
Réponses: 7
Vues: 1070

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite