6 résultats trouvés
Revenir à la recherche avancée
voila un exercice qui me pose problème soit E un esemble muni d'une loi de composition intrene associative telle que : il existe a appartenant a E tel que pour tt y appartenant a E , y=a*x*a montrer que E admet un élément neutre pour * je ne vois pas trop par où commencer si quelqu'un pouvait me don...
- par tchouby75
- 06 Jan 2008, 18:06
-
- Forum: ✯✎ Supérieur
- Sujet: groupe
- Réponses: 0
- Vues: 1908
voila je doit maintenat montrer que
(Adelta B) est un groupe abélien
AdeltaB=(AUB)\(AinterB)
j'ai reussit a montrer qu'il est associatif commutatif et que c'est une loi
mais, de la meme manière que tout a l'heure, je bloque sur le neutre...
- par tchouby75
- 03 Jan 2008, 20:09
-
- Forum: ✯✎ Supérieur
- Sujet: groupe-neutre
- Réponses: 7
- Vues: 520
oui effectivemnt ca marche bien ^^
mais en fait il y a quelque chose que je ne comprend pas , j'ai rencontrer le meme problème pour le neutre (c'est une question très bete ^^)
pourquoi peut on dire que
quand x*eg=x alors f^-1(x)*eg=f^-1(x)
merci
- par tchouby75
- 03 Jan 2008, 19:19
-
- Forum: ✯✎ Supérieur
- Sujet: groupe-neutre
- Réponses: 7
- Vues: 520
merci^^
maintenant je dois trouver l'inverse et la par contre je n'ai trop d'idée...
merci pour votre aide :happy2:
- par tchouby75
- 03 Jan 2008, 18:51
-
- Forum: ✯✎ Supérieur
- Sujet: groupe-neutre
- Réponses: 7
- Vues: 520
bonjour et bonne année a tous :we:
voila je n'arrive pas a trouver le neutre du groupe (H,T)
(G,*) un groupe et f:GdansH une bijection
xTy:=f(f^-1(x)*f-1(y))
je pensais a l'image du neutre de G mais je n'arrive pas a le monter
si quelqu'un pouvait m'apporter une petite aide... :happy2:
- par tchouby75
- 02 Jan 2008, 20:35
-
- Forum: ✯✎ Supérieur
- Sujet: groupe-neutre
- Réponses: 7
- Vues: 520