Dm
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
fouad
- Messages: 3
- Enregistré le: 06 Nov 2005, 19:25
-
par fouad » 06 Nov 2005, 20:01
on considere l'equation dans C: z²-az+(1/2 +iracine(3)/2)=0 avec a complexe s et t les racines de l'equation montrer que arg(s)+arg(t)=pi/3 +2kpi
-
becirj
- Membre Rationnel
- Messages: 698
- Enregistré le: 16 Oct 2005, 08:56
-
par becirj » 06 Nov 2005, 20:22
Bonsoir
Une équation du second degré admettant pour racines s et t peut s'écrire sous la forme :
(z-s)(z-t)=0
soit :
Donc pour l'équation proposée
arg(st)=arg (s)+arg(t) et
 = {\pi \over 3}+k2\pi)
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 63 invités