Développement Réduction 2de
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 13:46
Salut,
J'ai un exercice à faire, et je n'arrive pas. Voici l'énoncé :
1- Développer et réduire les expressions :
A(x) = (x²-1)²
B(x) = (x-1)(x-2)(x-3)
2- Factorisé au maximum les expressions :
_25x²-4+(5x+2)(4x-7)
_(3x+6)(2x-1)-3(4-x²)
Voilà, alors si vous pouviez m'expliquer, ça serait sympa.
a+
-
yvelines78
- Membre Légendaire
- Messages: 6903
- Enregistré le: 15 Fév 2006, 21:14
-
par yvelines78 » 20 Nov 2007, 13:53
bonjour,
A(x) = (x²-1)²
c'est une identité remarquable (a-b)²=a²-2ab+b² ou a=x² et b=1
B(x) = (x-1)(x-2)(x-3)
utilise la double distributivité
développe et réduis d'abord (x-1)(x-2) puis multiplie le résultat par (x-3)
b(x)=(....x²+.....x+......)(x-3)
donne tes résultats pour correction
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 14:02
Merci !
Alors pour A je trouve : (x²+1)(x²-1)
et pour B : x³-6x²+2x-6
Est-ce que c'est bon? Ca me parait bizarre...
-
yvelines78
- Membre Légendaire
- Messages: 6903
- Enregistré le: 15 Fév 2006, 21:14
-
par yvelines78 » 20 Nov 2007, 14:12
A(x) = (x²-1)²
c'est une identité remarquable (a-b)²=a²-2ab+b² ou a=x² et b=1
a(x)=(x²)²-2*(x²)*(1)+(1)²
B : x³-6x²+2x-6 non
fais voir le détail de tes calculs le ne trouve pas pareil pour les x
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 18:08
Merci de répondre !
Alors pour le A, c'est bon j'ai compris. Pour la B, le détail de mon calcul c'est :
(x²-2x-x+2)(x-3)
(x²-3x+2)(x-3)
x³-6x²+2x-6
Voila, merci de m'aider ! :)
-
Billball
- Membre Complexe
- Messages: 2669
- Enregistré le: 31 Mar 2006, 19:13
-
par Billball » 20 Nov 2007, 18:11
[FONT=Comic Sans MS]Oué c'est juste [/FONT]
-
carlo90
- Membre Naturel
- Messages: 39
- Enregistré le: 17 Nov 2007, 15:56
-
par carlo90 » 20 Nov 2007, 18:13
A(x) = (x²-1)²
= x^4 -2x² +1 :)
B : (x²-3x+2)(x-3)
= x³ -3x² +2x -3x² +9x -6
= x³ -6x² +11x -6
Je ne suis pas d'accord Billball ^^
Ton résultat pour la A est bon :)
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 18:14
Pour la B c'est juste? Et pour le A, mon résultat final est : x^4-2x²+1, est ce que c'est bon?
Merci pour les réponses !
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 18:15
Ha oui, merci pour le B !
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 18:17
Et pour les factorisation ? La je bloque complètement...
_25x²-4+(5x+2)(4x-7)
_(3x+6)(2x-1)-3(4-x²)
Merci de m'aider !
-
MarvelBoy
- Membre Naturel
- Messages: 52
- Enregistré le: 17 Oct 2007, 19:00
-
par MarvelBoy » 20 Nov 2007, 18:24
pour le 1 tu utilises l'identité remarquable (cherches toujours à factoriser) :
a²-b² = (a+b)(a-b) et tu pourras alors factoriser le tout :
(ax+b)(ax+c)+(ax+b)(ax+d) = (ax+b)(ax+c+ax+d) (...)
pour le 2 factorises 4-x² comme précédemment puis développes le avec -3
poursuis comme précédemment et factorises
voilà ^^
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 18:33
D'accord...
Pour le 1, j'arrive a la première étape : (25x-2)(25x+2)+(5x+2)(4x-7)
Mais ensuite ?
Merci pour les réponses !
-
MarvelBoy
- Membre Naturel
- Messages: 52
- Enregistré le: 17 Oct 2007, 19:00
-
par MarvelBoy » 20 Nov 2007, 18:41
achtung! attention aux calculs voyons, ne te précipite pas, relies toujours au moins une fois tes calculs...
25x²-4 + (5x+2)(4x-7)
= (5x)²-2² + (5x+2)(4x-7)
= (5x+2)(5x-2) + (5x+2)(4x-7)
relies mon autre post, de là tu devrais pouvoir encore factoriser!
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 18:54
Ha oui, voila !
Le résultat final c'est (5x+2)(9x-9), C'est ça?
-
MarvelBoy
- Membre Naturel
- Messages: 52
- Enregistré le: 17 Oct 2007, 19:00
-
par MarvelBoy » 20 Nov 2007, 19:03
oui !
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 19:18
D'accor, et pour le 2 ? Je n'arrive qu'a l'étape ou je trouve : (3x+6)(2x-1)-3(2-x)(2+x)
Ensuite, que faut-il faire?
Merci !
-
MarvelBoy
- Membre Naturel
- Messages: 52
- Enregistré le: 17 Oct 2007, 19:00
-
par MarvelBoy » 20 Nov 2007, 19:34
et bien de là tu essaies de trouver un double facteur (ici c'est 2+x) :
(3x+6)(2x-1)-3(2-x)(2+x)
= 3(x+2)(2x-1)+(3x-6)(2+x)
= (2+x)(6x-3)+(3x-6)(2+x)
= (2+x)(6x-3+3x-6)
= (2+x)(9x-9)
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 19:36
Je résume...
Pour le développement, je sais la 1 : x^4-2x²+1
la 2 : x³-6x²+11x-6
Pour la factorisation, je sais la 1 : (5x+2)(9x-9)
je ne sais pas la 2...
Queslqu'un peut m'expliquer la 2 ? J'arrive juste a l'étape : (3x+6)(2x-1)-3(2-x)(2+x)
Merci...
-
Real_NCIS
- Membre Naturel
- Messages: 71
- Enregistré le: 06 Sep 2007, 18:21
-
par Real_NCIS » 20 Nov 2007, 19:38
Merci beaucoup ! :)
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 55 invités