Corection ?
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
sylvain83
- Membre Naturel
- Messages: 65
- Enregistré le: 17 Sep 2006, 20:21
-
par sylvain83 » 10 Jan 2007, 16:35
salut je voudrait savoir si mon raisonnement et mon calcul sont bon
Soit le polinome p tels que :P(x)=-15x de degre 4+ 61x de degre 3 -62x² - 4x +8.
a_ Montrer en utilisant ce qui precede qu'on peut factoriser (x-2)² dans P(x)
b_Factoriser et en deduire toute les racines de p
alor jai fait ca
:
jai montre que 2 etait une racine de p :p(2)=0
(x-2)(axde degre 3 + bx² + cx d)
=ax de degre 4 +(b-2a)x degre3 + (c-2b)x² +(d-2c)x-2d
a=-15
b=31
c=0
d=-4
p(x)=(x-2)(-15x de degre 3 +31x²-4)
puis je fait
(x-2)(x-2)(ax² +bx +c)
-
amine801
- Membre Rationnel
- Messages: 538
- Enregistré le: 05 Jan 2007, 18:06
-
par amine801 » 10 Jan 2007, 16:40
ta demonstartion est juste mais il etait plus
juditieux et rapide de faire
P(2)=0 pour demontre que 2 est racine premire
P'(2)=0 pour demontre que 2 racine second
-
rene38
- Membre Légendaire
- Messages: 7135
- Enregistré le: 01 Mai 2005, 11:00
-
par rene38 » 10 Jan 2007, 16:42
Bonjour
sylvain83 a écrit:salut je voudrait savoir si mon raisonnement et mon calcul sont bon Soit le polinome p tels que

(x)=-15x de degre 4+ 61x de degre 3 -62x² - 4x +8.
a_ Montrer en utilisant ce qui precede qu'on peut factoriser (x-2)² dans P(x)
b_Factoriser et en deduire toute les racines de p
alor jai fait ca
:
jai montre que 2 etait une racine de p :p(2)=0
(x-2)(axde degre 3 + bx² + cx d)
=ax de degre 4 +(b-2a)x degre3 + (c-2b)x² +(d-2c)x-2d
a=-15
b=31
c=0
d=-4
p(x)=(x-2)(-15x de degre 3 +31x²-4)
puis je fais (x-2)(x-2)(ax² +bx +c)
oui, après avoir montré que 2 est racine de

-
sylvain83
- Membre Naturel
- Messages: 65
- Enregistré le: 17 Sep 2006, 20:21
-
par sylvain83 » 10 Jan 2007, 16:43
ce que vous veniez de me dire c 'est pour la a)
-
sylvain83
- Membre Naturel
- Messages: 65
- Enregistré le: 17 Sep 2006, 20:21
-
par sylvain83 » 10 Jan 2007, 16:53
ok ben merci pour votre reponse mais j 'aimerait bien que vous m'eclairiez sur un autre point
f(x)=2x sur racine x+3
je doit justifier que f est derivable sur ]0;+infini[
on fait f(a+h)-f(a) sur h
mais apres je bloque c 'est 2(a+h)-2a sur (racine x +3)h
ou c'est ( 2(a+h)-f(0) / (racine a + h)+3 -f(a))/h
mais bon la 2 je pensse vraiment pas que ca soit ca
-
amine801
- Membre Rationnel
- Messages: 538
- Enregistré le: 05 Jan 2007, 18:06
-
par amine801 » 10 Jan 2007, 16:56
la demarche que tu utilise c'est pour prouver la derivabilite en un point
utilise plutot le faite que ce soit le produit et la compose de fonction deja derivable
-
sylvain83
- Membre Naturel
- Messages: 65
- Enregistré le: 17 Sep 2006, 20:21
-
par sylvain83 » 10 Jan 2007, 16:59
jai pas tres bien compris :briques:
-
amine801
- Membre Rationnel
- Messages: 538
- Enregistré le: 05 Jan 2007, 18:06
-
par amine801 » 10 Jan 2007, 17:05
je te dit comment il faut argumente

est derivable et differente de 0 sur
donc

est derivable sur
tu dit aussi que 2x ets une fonction derivable sur

donc f(x) est derivable sur

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 52 invités