Dévelloper,réduire,factoriser
Réponses à toutes vos questions du CP à la 3ème
-
Anonyme
par Anonyme » 17 Fév 2010, 21:56
Bonsoir je voudrais voir si j'ai faux
On donne l'expression :
K=(2x-3)²-(2-x)²
1)Développer et réduire l'expression K
2)Factoriser K
3)Résoudre l'équation K=0
4)Calculer la valeur de K lorque x=-3
K=(2x-3)²-(2-x)²
K=(2x)²-2*2x*3+3²-[(2x)²-2*2*x+x²)]
K=4x²-12x+9-(2x)²+2*2*x-x²
K=4x²-12x+9-4x²+4x-x²
K=-x²-8x+9
K=(2x-3)²-(2-x)²
K=[(2x-3)+(2-x)]-[(2x-3)-(2-x)]
K=(x-1)-(3x-1)
K=0 un produit de facteur est nul si et seulement si au moin l'un de ses deux facteurs est nul c'est à dire :
(x-1)=0 ou (3x-1)=0
x=1 ou 3x=1
x=1 ou x=1/3
K=(2x-3)²-(2-x)²
K=(2*(-3)-3)²-(2-(-3))²
K=81-25
K=56
-
Ericovitchi
- Habitué(e)
- Messages: 7853
- Enregistré le: 18 Avr 2009, 13:24
-
par Ericovitchi » 17 Fév 2010, 22:04
non le développement est faux
le (2-x)² est égal à 4-4x+x² et pas (2x)²-2*2*x+x²
la factorisation est fausse aussi
a²-b²=(a+b)(a-b) et pas (a+b)-(a-b)
et puis (2x-3)-(2-x) = 3x-5 et pas (3x-1)
-
Anonyme
par Anonyme » 17 Fév 2010, 23:35
Merci j'ai corrigé :
K=(2x-3)²-(2-x)²
K=(2x)²-2*2x*3+3²-(2²-2*2*x+x²)
K=4x²-12x+9-4+4x-x²
K=3x²-8x+5
K=(2x-3)²-(2-x)²
K=[(2x-3)][(2-x)]
K=(x-1)(3x-5)
sinon le reste est bon ?
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 23 invités