Poblème

Discussion générale entre passionnés et amateurs de mathématiques sur des sujets mathématiques variés
PhiProj
Messages: 3
Enregistré le: 15 Oct 2014, 10:52

Poblème

par PhiProj » 15 Oct 2014, 13:28

Salut à tous,

Je vous soumet un problème :

Je recherche le temps nécessaire à l'émission totale de 569581 pièces numériques distribuées de la façon suivante :


1.6 pièce est émise toutes les 150 secondes
Au bout de 4 mois (10500000 secondes) on divise par 2 : 0.8 pièce toute les 150 secondes. 4 mois plus tard on divise encore par deux : 0.4 pièces toutes les 150 secondes et ainsi de suite... jusqu'à la distribution complète des 569581 pièces.
Combien de temps mettra la distribution complète des pièces ?

Merci !



Matt_01
Habitué(e)
Messages: 609
Enregistré le: 30 Avr 2008, 17:25

par Matt_01 » 15 Oct 2014, 14:08

Est-ce que tu as estimé le temps nécessaire ?
Combien de pièces fabriquent-ils les 4 premiers mois ?
Tu comprendras facilement si tu connais les sommes géométriques (ici de raison 1/2).

PhiProj
Messages: 3
Enregistré le: 15 Oct 2014, 10:52

par PhiProj » 15 Oct 2014, 15:21

Matt_01 a écrit:Est-ce que tu as estimé le temps nécessaire ?
Combien de pièces fabriquent-ils les 4 premiers mois ?
Tu comprendras facilement si tu connais les sommes géométriques (ici de raison 1/2).


Les 4 premiers mois, on a 1.6 pièces toutes les 150 secondes (38.4 pièces à l'heure )
soit 112000 pièces au total.

Je ne suis pas étudiant ni lycéen.
Je n'ai pas le bagage mathématique pour élucider la question.

Ce problème me fait penser à la radioactivité d'un élément qui décroit et tend vers 0.

Avatar de l’utilisateur
chan79
Membre Légendaire
Messages: 10330
Enregistré le: 04 Mar 2007, 19:39

par chan79 » 15 Oct 2014, 16:39

PhiProj a écrit:Les 4 premiers mois, on a 1.6 pièces toutes les 150 secondes (38.4 pièces à l'heure )
soit 112000 pièces au total.

Je ne suis pas étudiant ni lycéen.
Je n'ai pas le bagage mathématique pour élucider la question.

Ce problème me fait penser à la radioactivité d'un élément qui décroit et tend vers 0.

Salut
Si on ajoute toujours la moitié, on ne pourra pas dépasser 224000

PhiProj
Messages: 3
Enregistré le: 15 Oct 2014, 10:52

par PhiProj » 15 Oct 2014, 18:10

chan79 a écrit:Salut
Si on ajoute toujours la moitié, on ne pourra pas dépasser 224000


On ajoute pas, on divise par 2 le nombre de pièces distribuées tous les 4 mois.
On a une baisse exponentielle des pièces distribuées.

Pour la première année on a :
112000 pièces pour les 4 premiers mois
56000 pièces pour les 4 mois suivants
28000 pièces pour les 4 mois suivants
Et ça continue : tous les 4 mois, on divise par 2...
On a donc 296000 pièces (112000+56000+28000)la première année ( en gros car pour avoir un chiffre exact il faudrait utiliser les secondes)

Combien d'années faudra t-il attendre pour avoir 569581 pièces ?

Avatar de l’utilisateur
chan79
Membre Légendaire
Messages: 10330
Enregistré le: 04 Mar 2007, 19:39

par chan79 » 15 Oct 2014, 18:25

PhiProj a écrit:On ajoute pas, on divise par 2 le nombre de pièces distribuées tous les 4 mois.
On a une baisse exponentielle des pièces distribuées.

Pour la première année on a :
112000 pièces pour les 4 premiers mois
56000 pièces pour les 4 mois suivants
28000 pièces pour les 4 mois suivants
Et ça continue : tous les 4 mois, on divise par 2...
On a donc 296000 pièces (112000+56000+28000)la première année ( en gros car pour avoir un chiffre exact il faudrait utiliser les secondes)

Combien d'années faudra t-il attendre pour avoir 569581 pièces ?

112000+56000+28000=196000
x+x/2+x/4+x/8+ ....=2x

Matt_01
Habitué(e)
Messages: 609
Enregistré le: 30 Avr 2008, 17:25

par Matt_01 » 15 Oct 2014, 21:41

PhiProj a écrit:Ce problème me fait penser à la radioactivité d'un élément qui décroit et tend vers 0.

C'est un peu le même principe : le nombre de pièces restantes décroit de moins en moins rapidement, seulement cela ne tend pas vers 0. (cf les explications de chan)

Retourner vers ⚜ Salon Mathématique

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 3 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite