Fonction de transfert en Boucle fermée (automatique)

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Fonction de transfert en Boucle fermée (automatique)

Messagepar Transil » 09 Sep 2006, 14:15

J'ai un souci que je n'arrive pas à résoudre.
J'ai ma FTBO:
Hbo(p)=1.2alfa/((1+0.25p)(1+2zetap/w0+(p/w0)²))
Pour calculer ma FTBF (retour unitaire) je fais:
FDTBO/(1+FDTBO)
En fait je dois ensuite identifier avec:
F(p)=Kf/((1+p/wn)(1+2zetafp/wf+(p/wf)²)) et trouver les paramètres Kf, Wf, Zetaf et wn.
Le problème est que je n'arrive pas à identifier.
Pour identifier la seule chose que je connais est alfa=1.66
Merci de votre aide



Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 14:21

Retape ton énoncé en Latex car la ça ne nous invite pas a repondre.

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 14:32

Hbo=[\frac{1.2\alpha}{(1+0.25p)times(1+\frac{2\zeta\timesp}{\omega0}+(
\frac{p}{\omega0})²)}]

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 14:33

Flodelarab a écrit:Retape ton énoncé en Latex car la ça ne nous invite pas a repondre.

ca a l'air de fonctionner très bien "latex"

Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 14:55

Transil a écrit:Hbo=[\frac{1.2\alpha}{(1+0.25p)times(1+\frac{2\zeta\timesp}{\omega0}+(
\frac{p}{\omega0})²)}]


Bien sur avec les bonnes balises:
TEX] 3$
Hbo=[\frac{1.2\alpha}{(1+0.25p)\times(1+\frac{2\zeta p}{\omega0}+(
\frac{p}{\omega0})^2)}][/TEX]

donne


Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 15:05

Ok désolé j'ai oublié les balises.
Donc je dois identifier:FTBF= Hbo/(1+Hbo)



avec

Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 15:12

J'avais volontairement enlever le premier crochet pour qu'il ne l'interprete pas ...



avec

Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 15:15

Je comprends pas la difficulté.

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 15:17

Ok lol. On y est!
Je dois donc identifier les paramètres

Et le seul paramètre que je connaisse est
Je n'arrive pas a identifier à la fin j'ai toujours un 1 qui se retrouve seul.
La difficulté est que je dois trouver la FTBF donc
HBO/(1+HB0) et que je dois identifier avec F(p)

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 15:33

Je récapitule:
J'ai ma FTBO:

Pour calculer ma FTBF (retour unitaire) je fais:
FTBF=Hbo/(1+Hbo)
En fait je dois ensuite identifier avec:
et trouver les paramètres
Et le seul paramètre que je connaisse est .
Le problème est que je n'arrive pas à identifier.
A la fin il me reste un 1 tout seul et je coince

Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 15:47

Transil a écrit:A la fin il me reste un 1 tout seul et je coince

Comment ça "Il me reste un 1" ????

Quelle opération fais tu ?

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 15:50

Je te l'ai dit:
je calcule: Hbo/(1+Hbo) qui me donne une expression.
Et cette expression, je l'identifie avec F(p).

Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 16:10

Et si tu m'écrivais le Hbo/(1+Hbo) que tu trouves ?

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 16:47

Donc:
J'ai ma FTBO:


T'es OK (ca n'a rien de ifficile jusqu'ici!).
Apres j'ai bien essayé de développer mais ca ne donne rien à la fin je ne peux pas identifier

Flodelarab
Messages: 6617
Enregistré le: 29 Juil 2006, 14:04

Messagepar Flodelarab » 09 Sep 2006, 16:58

Sans vouloir etre desagréable, quand tu as fait ça tu as rien fait ....

Enleve moi cette série de fraction!
Mise au meme dénominateur, calcul, simplification réduction....

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 17:03

Ce que j'essaie de dire c'est qu'en partant de là, je n'arrive pas a simplifier pour arriver là ou je dois arriver.
Je ne veux pas qu'on me donne la réponse, je veux juste qu'on me dise si c'est possible de le faire.
Alors s'il te plait, fais comme moi (si tu as l'intention de m'aider ou de me faire perdre mon temps a écrire 50000 équations avec un outil "latex" que je ne connaissais même pas ce matin), prends une feuille, un crayon et regarde si tu peux faire avancer le schmilblik.
Merci

abel
Messages: 258
Enregistré le: 17 Mar 2006, 17:59

Messagepar abel » 09 Sep 2006, 19:19

J'ai pas regardé en détail tes calculs mais pour identifier 2 fonctions de transfert, la technique habituelle est de faire en sorte que le dénominateur soit une somme de termes sans unités (ou de la meme unité que le dénominateur de F(p)) puis d'identifier coefficient à coefficient (genre le coef devant p² de ta fonction vaudra celui devant le p² de F(p), pareil pour p puis pour le coef constant que l'on impose généralement égal à 1).
Enfin bon j'espere t'aider...Bon courage

EDIT : Dans ton cas, le + simple est de tout développer comme un gros bourrin le denominateur de ta FTBF ainsi que celui de F(p), puis de factoriser le dénominateur de FTBF par le coefficient constant et de faire une identification (ce qui est toujours possible car tes 2 dénominateurs de fonctions sont de meme degrès en p). N'oublie pas de multiplier en haut et en bas par ton dénominateur ce qui simplifiera les calculs de la FTBF.

Transil
Messages: 10
Enregistré le: 09 Sep 2006, 14:12

Messagepar Transil » 09 Sep 2006, 21:11

Merci beaucoup Abel, en suivant tes conseils j'ai avancé.
En developpant les 2 parties, j'obtiens un système de 3 equations a 3 inconnues:




Je connais

J'ai essayé de résoudre ce système mais ca part en live. J'obtiens:

J'obtiens des et je ne m'en sors plus

 

Retourner vers Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 11 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite